THEORY OF MACHINE LEARNING

LECTURE 9

INTRODUCTION TO OPTIMIZATION

SO FAR IN THE COURSE

$$
\left\{\begin{array}{l}
n: x \rightarrow\{0,\} \\
: x
\end{array}\right\}
$$

- Reasoning about learning
- Learning and generalization (distribution D)

- Inductive bias and necessity of choosing a hypothesis class (H)

$$
h: x \rightarrow\{0,1\}
$$

- PAC learnability of a class (given examples, find hypothesis that is as good as the best in class): agnostic, improper , output of Ala is outside of $1 t$.
t target hypothesis does not belong to our class.
Growth function of a class $\tau_{H}(m)$; small growth function $=>$ random sample is representative \Rightarrow class is learnable

$$
x_{1,} y_{1}^{\prime} \cdot\left(x_{2}, y_{2}\right)
$$

Fundamental theorem: VC dimension "captures" learnability
Homework 1

$$
\begin{aligned}
& X \subseteq \mathbb{R}^{d} \\
& x=\left(x_{1}, x_{2}, \ldots, x_{d}\right) \\
&\left(x_{1}^{2}, x_{2}^{2}, \ldots\right)
\end{aligned}
$$

FUNDAMENTAL THEOREM OF (STAT) LEARNING THEORY

- Theorem: The following statements are equivalent:
- Class H is PAC learnable
- Class H is agnostically PAC learnable

- Class H has finite VC dimension

RECALL: IMPLICATIONS

- If H has infinite VC dimension, it is not PAC learnable! (same proof as no-free-lunch theorem - homework)
- Agnostic case usually as hard as realizable case
- Caveat. Generalization guarantees only apply to ERM, not (say) to an improper learner
$>$ assumes that yore doing proper learning.
- ERM is all you need, assuming you have enough samples
- Doing ERM efficiently is a challenge
- Loss + optimization is the standard approach

OPTIMIZATION

SOLVING ERM EFFICIENTLY

RECAP: ERM IS OFTEN HARD WITH FINITE bASES
classification.

$$
X \subseteq \mathbb{R}^{2}
$$

w. x

$$
\vec{\omega}
$$

- Finding best linear classifier (fewest mistakes) is NP hard even to approximate! $\quad\left(x^{(1)}, y^{(1)}\right),\left(x^{(2)} \eta^{(2)} t^{(2)}: \quad\left\{h=\operatorname{sign}(\langle\omega, x\rangle+b): \omega \in \mathbb{R}^{d}\right\}\right.$
L, Solving the ERM problem is $N P$-hard.
- Common remedy: loss functions
- Discrete optimization (mistake bounds) to continuous $\left.\begin{array}{c}{[0 b j e c t i v e ~ b e ~ c o m e s ~} \\ \text { continuous. }\end{array}\right]$.
proxy for solving ERM

$$
w=\left(w_{1}, w_{2}, \ldots, w_{d}\right)
$$

$$
x=\left(x_{1}, x_{2}, \ldots, x_{2}\right)
$$

$$
\langle w, x\rangle=w_{1} x_{1}+\cdots+w_{d} x_{d} .
$$

minimize total loss

LOSS MINIMIZATION

- Given training examples $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots,\left(x_{m}, y_{m}\right)$, find hypothesis h to minimize "loss"
- Examples: square loss, I1 loss, logistic loss, ...
- Parametrize h
- Not all loss functions can be minimized efficiently!
for linear classifiers: $\quad h(x)=\langle\omega, x\rangle+b$
Square loss $\frac{\text { minimigatia }}{\text { find } \omega, \frac{1}{m}} \cdot \sum_{i}\left(y^{\left(y_{i}-\langle\omega, x\rangle-b\right)^{2}}\right.$

Exercise: think about bad examples for different loses.
loss formulation does not faithfully capture ERM.

Turns out: Loss minimization is essentially way we can generally deal with ERM.

Optimization: general umbrella term for loss minimization.

CONVEX OPTIMIZATION

$$
[\text { known to be "easy"]. }
$$

- Problem. Given a convex function defined over a convex domain, find the minimizer (or min value). \rightarrow

Convex domain $D \subseteq \mathbb{R}^{d}$
 if $x_{1}, x_{2}, x_{3} \in D$ they $\alpha x_{1}+\beta x_{2}+\gamma x_{3} \in D$

- All $g \mathbb{R}^{d}$ is convex.
- Convex sets can be unbounded
\rightarrow Formally, $\forall x, y$ in D, the entire line segment $\overline{x y}$ belongs to D.

$$
\begin{array}{r}
\forall \alpha, \beta, \gamma \geqslant 0 \text {, st. } \\
\alpha+\beta+\gamma=1
\end{array}
$$

-

Convex function f :

$$
f: \mathbb{R}^{d} \rightarrow \mathbb{R}
$$

One-dim: $f: \mathbb{R} \rightarrow \mathbb{R}$, then $f^{\prime \prime}(x) \geqslant 0 \quad \forall x \rightarrow \begin{gathered}\text { criteria for } \\ \text { Convexity. }\end{gathered}$ convexity.

- Formal definition: f is convex if $\forall x, y \in \operatorname{Domain}(f)$,

$$
\begin{aligned}
& \text { definition: } f(t x+(1-t) y) \leq t \cdot f(x)+(1-t) f(y) \forall t \in[0,1] \text {. } f f(x)+f(y) \quad f\} f(y)
\end{aligned}
$$

$$
f\left(\frac{x+y}{2}\right) \leq \frac{f(x)+f(y)}{2}
$$

$$
\begin{aligned}
& f(x)=e^{x} \\
& f(x)=x^{2}-1
\end{aligned}
$$

- Miniminiging a convex fun f over convex domain D is "easy"
- Maximizing is not; - f is not convex!
\max of a convex f_{n} is always attained at a boundary.
- For convex minimization, any local opt is a global opt. \int (say $x \in D$

Suppose $f(z)<f(x)$

$$
f(y) \leq t f(x)+(1-t) \underbrace{f(z)}_{<f(x)}<f(x)
$$

This gives hope for "local search" methods.
bx - start at some x

- iteratively move to a "neighboring point" with smaller f value.
[if yoire unable to find such a point to move to, then you have found local opt \leadsto global opt. have found local opt \leadsto global opt.

TAYLOR APPROXIMATION

- Functions over R^{d}, gradients, Hessian
- First order approximation

GRADIENT DESCENT ALGORITHM

- Very general approach

NATURAL ISSUES

- "Learning rate"
- Staying in the domain

GRADIENT DESCENT - VANILLA ANALYSIS

- Consider ' f ' that is L-Lipschitz, fixed learning rate, domain all of $R^{\wedge} d$
- Suppose OPT was distance B away from initial point

