THEORY OF MACHINE LEARNING

LECTURE 8

FUNDAMENTAL THEOREM OF STATISTICAL ML, INTRO TO OPTIMIZATION

LAST LECTURE

- Representative sample: for a hyp class H and distribution D over X, S is called "representative" if for all $h \in H, \mid($ avg error on $S)(h)$ - risk_D $(h) \mid \leq \epsilon$
- How to show that random sample is representative why, for an infinite hypothesis class (Chernoff + Union bound fails)
- Growth function $\tau_{H}(m)$; small growth function \Rightarrow r random sample is
representative

- Polynomial vs exponential!
- Shattering, VC dimension
max \#distinct ways in which $|S|=m \quad$ hypotheses in H classify S.

LEARNABILITY IN TERMS OF THE GROWTH FUNCTION

\#. Theorem: Suppose $\tau_{H}(m)$ be the growth function of a hypothesis class H. Then for any $\underset{\underline{X},}{ }$, , if we take a sample S of size m, with prob. 1- δ,

$$
\sup _{h \in H}|\operatorname{err}(h, S)-\operatorname{err}(h, D)| \leq \frac{4+\sqrt{\log \tau_{H}(2 m)}}{\delta \sqrt{2 m}}
$$

- If $\tau_{H}(m) \approx m^{d}$ for some parameter d then $m \sim \frac{d \log \left(\frac{d}{\epsilon}\right)}{\epsilon^{2}}$ makes the $\mathrm{RHS} \leq \epsilon$
- If $\tau_{H}(m)=(1.5)^{m}$
random sample of size $\frac{d \log (d / r a)}{\varepsilon^{2}}(=m)$
is ε-representative w.p. ~ 0.9.

LAST LECTURE - SHATTERING AND VC DIMENSION

$$
f=\left\{h: x \rightarrow\left\{\infty_{0}^{ \pm} 1\right\}\right\} ; \quad s \subseteq x .
$$

- A hypothesis class H is said to shatter a set \underline{S} if all possible classifications (all $2^{\wedge}|S|$ of them) can be obtained using hypotheses $h \in J t$
- Intuitively for such a hyp class, giving the labels of a subset of S doesn't give any information about labels of other points!
- VC dimension: is the size of the largest set in X that can be shattered by H $\max \{m: \exists S$ of size m that is shattered $\}$.
- Examples: VC dimension of 1-D LTFs, etc.

meta heuristic: $V C-\operatorname{sim}=$ \# parameters used to describe $h \in J t$

SAUER-SHELAH LEMMA (VAPNIK-CHERVONENKIS)
(if $V C$-dimension $\leq d$, then $\tau_{H}(m) \leq O\left(m^{d}\right)$).

Lemma. Let H be a hypothesis class of finite VC dimension d . Then for every m, we have:

$$
\tau_{H}(m) \leq\binom{ m}{0}+\binom{m}{1}+\cdots+\binom{m}{d} \quad\left[\sim m^{d \mathcal{Z}}\right]
$$

- Much better than exponential, for m large $(1.5)^{m}$ grow way faster
- Proof by a clever inductive argument than m^{2}.

$$
X=\mathbb{R}
$$

$H=\{\operatorname{sign}(p(x)): p$ is a polynomial $\}$

$$
\binom{n}{k}=0 \quad \text { if } n<k
$$ PF.

FUNDAMENTAL THEOREM OF (STAT) LEARNING THEORY

$$
\begin{aligned}
& X=\mathbb{R} ; H: L T F S=\{\operatorname{sign}(x-\theta) ; \theta \in \mathbb{R}\} . \\
& =
\end{aligned}
$$

degree -2 PTFs:

- Theorem: The following statements are equivalent:

Tc Class H is PAC learnable (recall the (ε, δ)-definition of PAC Learning)

- Class H is agnostically PAC learnable \quad SS Lemma $\Rightarrow \tau_{H}(m) \leq O\left(m^{d}\right)$
$=$ Class H has finite VC dimension $\hat{\pi} \quad$ Prev. theorem $\Rightarrow m$-sized sample is E-rep. wop. $1-\delta$ d. \log $m>\frac{d \cdot \cos \left(\frac{d}{\delta \delta}\right)}{(\varepsilon \delta)^{2}}$.
- Implies that if H has infinite VC dimension, it is not PAC learnable! (same proof as no-free-lunch theorem - homework)
[Note: to prove that $V C$-dim is infinite, you show that for any $m \in \mathbb{N}, \exists$ an S of singe m that can be shattered. $\}$.

$$
(x, h(x))
$$

It is a given hyp-class.
PAC-learning ("realizable"): if true labeling function is some $h \in J t$, then we can find h^{\prime} s.t. risk $\left(h^{\prime}\right) \leq \varepsilon$.

H: give hyp. class.
PAC-learning (agnostic): for any true label function f, we can find h^{\prime} sit. $\operatorname{risk}\left(h^{\prime}\right) \leq \min _{h \in J t} \operatorname{risk}(h)+\varepsilon$.
$\rightarrow H$: linear separators in 2D.

$$
\begin{aligned}
& \left(x_{1}, f\left(x_{1}\right)\right),\left(x_{2}, f\left(x_{2}\right), \ldots\right.
\end{aligned}
$$

be at most ε worse

FUNDAMENTAL THEOREM OF (STAT) LEARNING THEORY

- Theorem: The following statements are equivalent:

- Implies that if H has infinite VC dimension, it is not PAC learnable! (same proof as no-free-lunch theorem - homework)

SOME IMPLICATIONS

- If H has infinite VC dimension, it is not PAC learnable! (same proof as no-free-lunch theorem -homework)
- ERM is all you need, assuming you have enough samples (proof of the theorem - Doing ERM efficiently is a challenge (next section) implies this.)
- Agnostic case usually as hard as realizable case \rightarrow (in terms of sample) complexity.
- Caveat. Learnability guarantees only apply to ERM, not (say) to an improper learner
if you perform "leaning" and obtain h with 0 training error \#
\rightarrow Most opt methods are not guaranteed to find optima. (because the ERM problem is
\rightarrow Some settings in which they do.
(convergence rates, ctr.).

OPTIMIZATION
HOW TO SOLVE ARM EFFICIENTLY?

BASICS

- Linear classification
- Linear classification - non realizable

$$
\begin{array}{ll}
x \in \mathbb{R}^{\alpha} \\
\text { (feature vector) }
\end{array}
$$

$$
\begin{aligned}
& x \in \mathbb{R}^{2} \\
& (\text { feature rector) }
\end{aligned}
$$

$$
V C-\operatorname{dim}(H)=d+1 \rightarrow V C \text { theory tells us: } \sim \frac{d}{\varepsilon^{2}} \text { examples, then }
$$

we can find the "best linear clasifier" for any D, and any ground thoth f.

$$
\begin{aligned}
& \text { - Convexity and convex optimization }
\end{aligned}
$$

$$
\begin{gathered}
\left\langle a, x^{(1)}\right\rangle+b \geqslant 0 \\
\left\langle a, x^{(2)}\right\rangle+b<0 \text { label } \\
\vdots \\
\vdots \\
\text { OPT error }=\varepsilon \\
\text { NP. hard to achieve error }<\frac{1}{2}-\delta .
\end{gathered}
$$

