THEORY OF MACHINE LEARNING

LECTURE 7

VC DIMENSION, FUNDAMENTAL THEOREM (CONTD.)

LAST WEEK
PAC: Probably Approximately Correct.

- Representative sample: for a hyp class H and distribution D over X, S is called "representative" if for all $h \in H$, | (avg error on S)(h) - risk_D (h) $\mid \leq \epsilon$
- Observation. If training data happened to be a representative sample, ERM is an agnostic learning algorithm If δ is representative, h automatically generalize.
- Observation 2. For a finite hypothesis class, a random sample of size ~ $\log |H|$ is representative (for any distribution D over a potentially w.h.p. $(\geqslant 1-\delta) \quad \log (|+1| / \delta) \quad$ infinitive X.
- Chernoff + Union bound $\frac{\log (|+1| / \delta)}{\varepsilon^{2}}$

WHAT ABOUT INFINITE CLASSES?

- Note: if sample is representative, we are good!
- How doyou prove that a "cmall" sample is e-rep. when
- "Growth function" of a class: total number of distinct ways in with H can label a set of m points (\# distinct "sign patterns")
- H is the class of I.t.f. in 1D: $(m+1)$
- H is the class of intervals in 1D: $O\left(m^{\wedge} 2\right)$
- H is the class of axis-parallel rectangles? messy, but $O\left(m^{\wedge} 4\right)$
- H is the class of "convex polygons" in 2D: 2^m (exponential)

$\tau(\mathrm{m}): \max \#$ of distinct classify for a set S of
sing m
$(m+1)$

$\sim O\left(m^{2}\right)$ distinct classifications.

Convex polygons in 2D:

$$
\tau_{H l}(m)=2^{m} .
$$

given any potential clarification, we can obtain it via a hypothesis in the class.

of convex polygons.

$$
\tau_{H}(m)=2^{m}
$$

Very rough statement: if H has the property that any $h \in \mathcal{H}$ is determined by $\sim d$ "parameter", then the growth for $\sim n^{d}$.

TODAY

- "Small" growth function => hypothesis class is learnable! (a "samals" sample is ε-representative why.).
- How to bound growth function? VC dimension \& Sauer's lemma (attributed to Saver and Shelah, VC)

$$
y \vee c \operatorname{dim}=d \text {, growth }
$$ function

- deft of E-rep was "deterministic".

$$
\leq o\left(n^{d}\right)
$$

H: axis parallel rectangles

LEARNABILITY IN TERMS OF THE GROWTH FUNCTION

- Theorem: Suppose $\tau_{H}(m)$ be the growth function of a hypothesis class H. Then for any X, D, if we take a sample S of size m, with prob. 1- δ,

$$
\begin{aligned}
& \forall h \in \mathcal{H}: \\
& \begin{array}{l}
\text { sup } \\
h \in H) \\
\end{array} \operatorname{err}^{(h, S)-\operatorname{err}(h, D) \mid}=\frac{4+\sqrt{\log \tau_{H}(2 m)}}{\delta \sqrt{2 m}}
\end{aligned}
$$

- In other words, if ' m ' is chosen so that RHS $<\epsilon$, theorem implies that random sample of size m is ϵ-representative
Recall: defy of ε-rep: had an ε on the RHS. So y we choose m sit. $\frac{4+\sqrt{\log \pi_{H}(2 m)}}{\delta \sqrt{2 m}} \leqslant \varepsilon$ then Theorem implies that ar andom Sample of size in प ह-rep; with prob $\geqslant 1-\delta$.
- H is the class of intervals in 1D: $O\left(m^{\wedge} 2\right)$

- H is the class of axis-parallel rectangles? messy, but $\mathrm{O}\left(\mathrm{m}^{4} 4\right)$, same bound, bigger constant.
- H is the class of "convex polygons" in 2D: $2^{\wedge} m$ (exponential)

$$
\sqrt{\log (2 m)^{4}}=\sqrt{4 \log (2 m)}
$$

If growth $f_{n} \leq m$,

Obs 1:
\rightarrow If $\xrightarrow{\tau_{H}(m) \leq 0\left(m^{2}\right)}$, then to make $\frac{4+\sqrt{\log \left(\tau_{H}(2 m)\right)}}{\delta \sqrt{2 m}} \leq \varepsilon$, we just need to set

$$
m \geqslant \frac{(\varepsilon \cdot d}{(\varepsilon \delta)^{2}} \log \left(\frac{d}{\varepsilon \delta}\right)
$$

Ohs 2:
\rightarrow If $\tau_{H}(m)=(1.5)^{m}$, then the condition $2^{\sqrt{m}}$

$$
\begin{gathered}
\frac{4+\sqrt{\left.\sqrt{\log \left(\tau_{+}(2 m)\right.}\right)}}{\delta \sqrt{2 m}} \leq \varepsilon \Leftrightarrow \frac{4+\frac{\sqrt{(2 m) \log (1.5)}}{\delta \cdot \sqrt{2 m}}}{\delta} \leq \varepsilon . \\
L 1+\delta \simeq \frac{1}{\delta}
\end{gathered}
$$

If growth fr in exp. then a sample cannot be guaranteed to be representative why.

HOW TO BOUND GROWTH FUNCTION?

Shattering: given a hyp. class It and a set So points, we say that It shatters S if every possible classification on S, can be achieved by some heft.

VC-dimeninan: VC-dimeusion of a class It of functions over X is defined as the size of the largest set that is shattered by \mathcal{H}.

UTE:

What about $H:=\left\{\begin{array}{c}\text { intervals on the line } \\ \text { cohere label is inside }\end{array}\right\} .-[+$
in order to show $v C-\operatorname{dim}(H)=d \quad \&$ - outside.
(t) a set of size d that can be shattered $\rightarrow d=2$
\checkmark 2) No set of size $(d+1)$ can be shattered! \rightarrow

No set of 3 points can be shattered...

SAUER-SHELAH LEMMA (VAPNIK-CHERVONENKIS)

- Lemma. Let H be a hypothesis class of finite VC dimension d. Then for every m, we have:

$$
\tau_{H}(m) \leq\binom{ m}{0}+\binom{m}{1}+\cdots+\binom{m}{d}
$$

- Much better than exponential, for m large
- Proof by a clever inductive argument

FUNDAMENTAL THEOREM OF (STAT) LEARNING THEORY

- Theorem: The following statements are equivalent:
- Class H is PAC learnable
- Class H is agnostically PAC learnable
- Class H has finite VC dimension
- Implies that if H has infinite VC dimension, it is not PAC learnable! (same proof as no-free-lunch theorem)

LEARNABILITY IN TERMS OF THE GROWTH FUNCTION

- Theorem: Suppose $\tau_{H}(m)$ be the growth function of a hypothesis class H. Then for any X, D, if we take a sample S of size m, with prob. 1- δ,

$$
\sup _{h \in H}|\operatorname{err}(h, S)-\operatorname{err}(h, D)| \leq \frac{4+\sqrt{\log \tau_{H}(2 m)}}{\delta \sqrt{2 m}}
$$

- In other words, if ' m ' is chosen so that RHS $<\epsilon$, theorem implies that random sample of size m is ϵ-representative

OUTLINE -- THE TWO SAMPLE TRICK

- Want to show that a random sample is ϵ-representative
- Take sample S, define event:
$A=\operatorname{Pr}$ [sample is not representative]
- Way to "test" if S is not representative?
- "Cross validation"
- Define new event S, S'
- "Swapping"

