
THEORY OF MACHINE LEARNING

LECTURE 8

FUNDAMENTAL THEOREM OF STATISTICAL ML, INTRO TO OPTIMIZATION



LAST LECTURE

 Representative sample: for a hyp class H and distribution D over X, S is 

called “representative” if

for all ℎ ∈ 𝐻, | (avg error on S)(h) – risk_D (h) | ≤ 𝜖

 How to show that random sample is representative whp, for an infinite 

hypothesis class (Chernoff + Union bound fails)

 Growth function 𝜏𝐻(𝑚); small growth function => random sample is 

representative

 Polynomial vs exponential!

 Shattering, VC dimension



LEARNABILITY IN TERMS OF THE GROWTH FUNCTION

 Theorem: Suppose 𝜏𝐻 𝑚 be the growth function of a hypothesis class H. 

Then for any X, D, if we take a sample S of size m, with prob. 1-𝛿,

sup
ℎ∈𝐻

𝑒𝑟𝑟 ℎ, 𝑆 − 𝑒𝑟𝑟 ℎ, 𝐷 ≤
4 + log 𝜏𝐻(2𝑚)

𝛿 2𝑚

 If 𝜏𝐻 𝑚 ≈ 𝑚𝑑 for some parameter d then m ~ 
𝑑 log

𝑑

𝜖

𝜖2
makes the RHS < 𝜖



LAST LECTURE – SHATTERING AND VC DIMENSION

 A hypothesis class H is said to shatter a set S if all possible 

classifications (all 2^|S| of them) can be obtained using hypotheses

 Intuitively for such a hyp class, giving the labels of a subset of S doesn’t 

give any information about labels of other points!

 VC dimension: is the size of the largest set in X that can be shattered 

by H

 Examples: VC dimension of 1-D LTFs, etc.



SAUER-SHELAH LEMMA (VAPNIK-CHERVONENKIS)

 Lemma. Let H be a hypothesis class of finite VC dimension d. Then for 

every m, we have:

 Much better than exponential, for m large

 Proof by a clever inductive argument



FUNDAMENTAL THEOREM OF (STAT) LEARNING THEORY

 Theorem: The following statements are equivalent:

 Class H is PAC learnable

 Class H is agnostically PAC learnable

 Class H has finite VC dimension

 Implies that if H has infinite VC dimension, it is not PAC learnable!  (same 

proof as no-free-lunch theorem – homework)
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SOME IMPLICATIONS

 If H has infinite VC dimension, it is not PAC learnable!  (same proof as 

no-free-lunch theorem – homework)

 ERM is all you need, assuming you have enough samples

 Doing ERM efficiently is a challenge (next section)

 Agnostic case usually as hard as realizable case

 Caveat. Learnability guarantees only apply to ERM, not (say) to an 

improper learner



OPTIMIZATION
HOW TO SOLVE ERM EFFICIENTLY?



BASICS

 Linear classification

 Linear classification – non realizable

 Loss functions

 Convexity and convex optimization


