
THEORY OF MACHINE LEARNING

LECTURE 8

FUNDAMENTAL THEOREM OF STATISTICAL ML, INTRO TO OPTIMIZATION



LAST LECTURE

 Representative sample: for a hyp class H and distribution D over X, S is 

called “representative” if

for all ℎ ∈ 𝐻, | (avg error on S)(h) – risk_D (h) | ≤ 𝜖

 How to show that random sample is representative whp, for an infinite 

hypothesis class (Chernoff + Union bound fails)

 Growth function 𝜏𝐻(𝑚); small growth function => random sample is 

representative

 Polynomial vs exponential!

 Shattering, VC dimension



LEARNABILITY IN TERMS OF THE GROWTH FUNCTION

 Theorem: Suppose 𝜏𝐻 𝑚 be the growth function of a hypothesis class H. 

Then for any X, D, if we take a sample S of size m, with prob. 1-𝛿,

sup
ℎ∈𝐻

𝑒𝑟𝑟 ℎ, 𝑆 − 𝑒𝑟𝑟 ℎ, 𝐷 ≤
4 + log 𝜏𝐻(2𝑚)

𝛿 2𝑚

 If 𝜏𝐻 𝑚 ≈ 𝑚𝑑 for some parameter d then m ~ 
𝑑 log

𝑑

𝜖

𝜖2
makes the RHS < 𝜖



LAST LECTURE – SHATTERING AND VC DIMENSION

 A hypothesis class H is said to shatter a set S if all possible 

classifications (all 2^|S| of them) can be obtained using hypotheses

 Intuitively for such a hyp class, giving the labels of a subset of S doesn’t 

give any information about labels of other points!

 VC dimension: is the size of the largest set in X that can be shattered 

by H

 Examples: VC dimension of 1-D LTFs, etc.



SAUER-SHELAH LEMMA (VAPNIK-CHERVONENKIS)

 Lemma. Let H be a hypothesis class of finite VC dimension d. Then for 

every m, we have:

 Much better than exponential, for m large

 Proof by a clever inductive argument



FUNDAMENTAL THEOREM OF (STAT) LEARNING THEORY

 Theorem: The following statements are equivalent:

 Class H is PAC learnable

 Class H is agnostically PAC learnable

 Class H has finite VC dimension

 Implies that if H has infinite VC dimension, it is not PAC learnable!  (same 

proof as no-free-lunch theorem – homework)
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SOME IMPLICATIONS

 If H has infinite VC dimension, it is not PAC learnable!  (same proof as 

no-free-lunch theorem – homework)

 ERM is all you need, assuming you have enough samples

 Doing ERM efficiently is a challenge (next section)

 Agnostic case usually as hard as realizable case

 Caveat. Learnability guarantees only apply to ERM, not (say) to an 

improper learner



OPTIMIZATION
HOW TO SOLVE ERM EFFICIENTLY?



BASICS

 Linear classification

 Linear classification – non realizable

 Loss functions

 Convexity and convex optimization


