THEORY OF MACHINE LEARNING

LECTURE 6

VC DIMENSION, FUNDAMENTAL THEOREM

LAST LECTURE
Core set: strong corsets.

- Representative sample: for a hyp class H and distribution D over X, S is called "representative" if training error for all $h \in H, \mid$ (avg error on $S)(h)$-risk_D $(\underbrace{(h) \mid \leq \epsilon}$, test enor.
- Observation. If training data happened to be a representative sample, ERM gives a hypothesis with good generalization. (you will be close (Question of ERM being efficient is orthogonal...) to the risk of the best $h \in J t$.)
- Observation 2. For a finite hypothesis class, a random sample of size ~ $\log |H|$ is representative
- Proof using "concentration" inequality (Chernoff/Hoeffding)

CONCENTRATION BOUND

- Chernoff bound (Hoeffding). Suppose $X_{1}, X_{2}, \ldots X_{n}$ are n id samples from a distribution with mean μ and support $[a, b]$. Then we have

$$
\operatorname{Pr}\left[\left|\frac{1}{n}\left(X_{1}+\cdots+X_{n}\right)-\mu\right|>\epsilon\right] \leq 2 \exp \left(-\frac{\epsilon^{2} \tilde{n}}{(a-b)^{2}}\right)
$$

- Note: exponential dependence on n "large deviation bounds"
to make RHS

$$
\frac{\varepsilon^{2} n}{(a-b)^{2}}>\log \left(\frac{2}{\delta}\right) \Leftrightarrow n>\frac{(a-b)^{2}}{\varepsilon^{2}} \cdot \log \left(\frac{2}{\delta}\right) .
$$

FINITE CLASSES ARE LEARNABLE
H: finite hype class: $H=\left\{h_{1}, h_{2}, \ldots, h_{M}\right\}$.

- Claim: for any X and distribution D over it, a sample of size $O\left(\frac{1}{\epsilon^{2}} \log \frac{\frac{M}{2 H I}}{\delta}\right)$ is representative with prob. at least $1-\delta \quad\{\forall h \in \mathcal{H}$,
- Proof: write ' m ' for the sample size
- First look at a single
\mid ever on sample - evora on $\mid \leq \varepsilon\}$ with prob $\geqslant 11_{1-8}$.
- Prob. that |sample error (h) - risk (h)|> \mathcal{E} can be viewed as an application of Chernoff bound! $X_{1}= \begin{cases}1 & \text { y } h \text { is incorrect on sample \#1 } \\ 0 & \text { if } h \text { is correct. }\end{cases}$
- Gives a bound $2 e^{-\epsilon^{2} m} \cdot\left(\frac{\delta}{|H|}\right.$ $x_{2}=1 \cdots$.
- Union bound to prove that $\operatorname{Pr}[$ diff $>\in$ for some $h]<\delta$
(9) - Let us say that S is "bad" for h if (an) $\leq^{8 /(H 1)} \mid$ sample error on $S(h)-$ risk $(h) \mid>\varepsilon$.
$\operatorname{Prob}(S$ is bad for some given $) ~ h) \leq \frac{\delta}{|H|} \quad(\&$ this is true (when we sample
a random S)

$$
\begin{align*}
& \Rightarrow \operatorname{Prob}(S \text { is good for All } h \in J t) \geqslant 1-\delta \text {. } \\
& \operatorname{Pr}(S \text { in good } \forall h \in 3 t) \equiv 1-\operatorname{Pr}(\exists h \in J t \text { set. } S \text { is bad for } h) \text {. } \tag{Pr}\\
& \operatorname{Pr}(A \vee B) \\
& -\underset{\geqslant 0}{\operatorname{Pr}(\overline{A M B})}
\end{align*}
$$

$\operatorname{Pr}\left(S\right.$ is bad for $h_{1} V S$ ib bad for $h_{2} V \ldots V S$ is bad for $\left.h_{M}\right)$
$\leq \operatorname{Pr}\left(\int_{c \delta(|+|)}^{\left.S \text { bad for } h_{1}\right)}\right)+\operatorname{Pr}\left(S_{\text {is bad fro } h_{2}}\right)+\ldots \leq \delta$.

WHAT ABOUT INFINITE CLASSES?

- Note: if sample is representative, we are good! (modulo inefficiency of ERM)
- What if we can divide hypotheses into finitely many "classes"?
- Example of threshold functions on a line
\rightarrow If $|X|$ is finite, then the fact that there are infinitely many hypotheses does not matter!

GROWTH FUNCTION OF A CLASS
Obsn: What matters is n't the \# of distinct hypotheses, 't's the \# of ways in which the hypotheses classify points of the domain.

- Maximum number of "possible classifications" of an input of size m

Growth function: If a hypothesis class, \mathcal{F},

$$
\begin{aligned}
& \begin{array}{c}
\tau_{\mathcal{H}}(m):=\begin{array}{l}
\max ^{|S|=m} \\
\leq 2^{m}
\end{array}\left\{\begin{array}{l}
\text { \# of distinct ways in which } \\
\text { hypotheses in } \mathcal{H} \text { classify } S
\end{array}\right\}
\end{array} \\
& t_{0} \quad{ }_{0} \quad s \leq X \\
& \therefore+{ }^{+}+\quad \text { Two classifications are distinct if } \\
& \begin{array}{l}
S=\left(x_{1}, x_{2}, \ldots x_{m}\right) \\
h(s)=(t,-,-, \ldots) \rightarrow \text { sign pattern. }
\end{array}
\end{aligned}
$$

Qu: what is the growth function of $L T F_{S}$, over X Q

$$
\underbrace{}_{\mathcal{H}}(m)=\begin{gathered}
\max \\
|S|=m \\
S \subseteq \mathbb{R}
\end{gathered}\left\{\begin{array}{l}
\# \text { distinct ways in which } \\
S \text { is classified by hypotheses in } 3 t
\end{array}\right\}
$$

Qu: what is the growth function of intervals on the \mathbb{R} line?

Simple exercise: $\quad \tau_{H}(m) \leq O\left(m^{2}\right)$.

Qu: Consider $H=\left\{\right.$ convex polygons in $\left.\mathbb{R}^{2}\right\}$.
What is $\tau_{1 t}(\mathrm{~m})$? 2^{m} ?

To show $\tau_{t t}(m)=2^{m}$, you must show one set of m pts S.t. all sign patterns on those points are possible.

$$
\begin{aligned}
& m=4 \\
& \left(\begin{array}{c}
0 \\
0 \\
0 \\
+ \\
+
\end{array}\right) \\
& \tau_{H}(m)=2^{m} \text {. } \\
& \begin{array}{l}
+00 \\
+-0+ \\
-+i
\end{array} \\
& S \subseteq\{m\}
\end{aligned}
$$

LEARNABILITY IN TERMS OF THE GROWTH FUNCTION

- finite hyp classes: $O(\log P t \mid)$ samples suffice for $P A C-$ leaning
- Theorem: Suppose $\tau_{H}(m)$ is an upper bound on the total number of distinct "classifications" (or "sign patterns") possible for any sample of size m. Then for any X, D, if we take a sample S of size m, we have, with prob. 1- δ,

HOW TO BOUND GROWTH FUNCTION?

- Shattering.
- VC dimension.

SAUER-SHELAH LEMMA (VAPNIK-CHERVONENKIS)

- Lemma. Let H be a hypothesis class of finite VC dimension d. Then for every m, we have:

$$
\tau_{H}(m) \leq\binom{ m}{0}+\binom{m}{1}+\cdots+\binom{m}{d}
$$

- Much better than exponential, for m large
- Proof by a clever inductive argument

FUNDAMENTAL THEOREM OF (STAT) LEARNING THEORY

- Theorem: The following statements are equivalent:
- Class H is PAC learnable
- Class H is agnostically PAC learnable
- Class H has finite VC dimension
- Implies that if H has infinite VC dimension, it is not PAC learnable! (same proof as no-free-lunch theorem)

LEARNABILITY IN TERMS OF THE GROWTH FUNCTION

- Theorem: Suppose $\tau_{H}(m)$ is an upper bound on the total number of distinct "classifications" (or "sign patterns") possible for any sample of size m. Then for any X, D, if we take a sample S of size m, we have, with prob. 1- δ,

$$
\sup _{h \in H}|\operatorname{err}(h, S)-\operatorname{err}(h, D)| \leq \frac{4+\sqrt{\log \tau_{H}(2 m)}}{\delta \sqrt{2 m}}
$$

OUTLINE -- THE TWO SAMPLE TRICK

- Want to show that a random sample is ϵ-representative
- Take sample S, define event:
$A=\operatorname{Pr}$ [sample is not representative]
- Way to "test" if S is not representative?
- "Cross validation"
- Define new event S, S'
- "Swapping"

