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VC DIMENSION, FUNDAMENTAL THEOREM



LAST LECTURE

 Representative sample: for a hyp class H and distribution D over X, S is 

called “representative” if

for all ℎ ∈ 𝐻, | (avg error on S)(h) – risk_D (h) | ≤ 𝜖

 Observation. If training data happened to be a representative sample, 

ERM gives a hypothesis with good generalization. 

(Question of ERM being efficient is orthogonal…)

 Observation 2. For a finite hypothesis class, a random sample of size ~ 

log |H| is representative

 Proof using “concentration” inequality (Chernoff/Hoeffding)



CONCENTRATION BOUND

 Chernoff bound (Hoeffding). Suppose 𝑋1, 𝑋2, …𝑋𝑛 are n iid samples 

from a distribution with mean 𝜇 and support [a, b]. Then we have

Pr
1

𝑛
𝑋1 +⋯+ 𝑋𝑛 − 𝜇 > 𝜖 ≤ 2 exp (−

𝜖2𝑛

𝑎−𝑏 2)

 Note: exponential dependence on n 



FINITE CLASSES ARE LEARNABLE

 Claim: for any X and distribution D over it, a sample of size 𝑂
1

𝜖2
log

𝐻

𝛿

is representative with prob. at least 1 − 𝛿

 Proof:   write ‘m’ for the sample size

 First look at a single ℎ ∈ 𝐻

 Prob. that |sample error(h) – risk(h)| > 𝜖 can be viewed as an application of 

Chernoff bound!

 Gives a bound 2𝑒−𝜖
2𝑚 < 

𝛿

𝐻

 Union bound to prove that Pr[ diff > 𝜖 for some h ] < 𝛿



WHAT ABOUT INFINITE CLASSES?

 Note: if sample is representative, we are good! 

(modulo inefficiency of ERM)

 What if we can divide hypotheses into finitely many “classes”?

 Example of threshold functions on a line



GROWTH FUNCTION OF A CLASS

 Maximum number of “possible classifications” of an input of size m



LEARNABILITY IN TERMS OF THE GROWTH FUNCTION

 Theorem: Suppose 𝜏𝐻 𝑚 is an upper bound on the total number of 

distinct “classifications” (or “sign patterns”) possible for any sample of 

size m. Then for any X, D, if we take a sample S of size m, we have, with 

prob. 1-𝛿,

sup
ℎ∈𝐻

𝑒𝑟𝑟 ℎ, 𝑆 − 𝑒𝑟𝑟 ℎ, 𝐷 ≤
4 + log 𝜏𝐻(2𝑚)

𝛿 2𝑚



HOW TO BOUND GROWTH FUNCTION?

 Shattering.

 VC dimension.



SAUER-SHELAH LEMMA (VAPNIK-CHERVONENKIS)

 Lemma. Let H be a hypothesis class of finite VC dimension d. Then for 

every m, we have:

 Much better than exponential, for m large

 Proof by a clever inductive argument



FUNDAMENTAL THEOREM OF (STAT) LEARNING THEORY

 Theorem: The following statements are equivalent:

 Class H is PAC learnable

 Class H is agnostically PAC learnable

 Class H has finite VC dimension

 Implies that if H has infinite VC dimension, it is not PAC learnable!  (same 

proof as no-free-lunch theorem)



LEARNABILITY IN TERMS OF THE GROWTH FUNCTION

 Theorem: Suppose 𝜏𝐻 𝑚 is an upper bound on the total number of 

distinct “classifications” (or “sign patterns”) possible for any sample of 

size m. Then for any X, D, if we take a sample S of size m, we have, with 

prob. 1-𝛿,

sup
ℎ∈𝐻

𝑒𝑟𝑟 ℎ, 𝑆 − 𝑒𝑟𝑟 ℎ, 𝐷 ≤
4 + log 𝜏𝐻(2𝑚)

𝛿 2𝑚



OUTLINE -- THE TWO SAMPLE TRICK

 Want to show that a random sample is 𝜖-representative

 Take sample S, define event: 

A = Pr [ sample is not representative ]

 Way to “test” if S is not representative?

 “Cross validation”

 Define new event S, S’

 “Swapping”


