THEORY OF MACHINE LEARNING

LECTURE 5

PAC MODEL, VC DIMENSION

Goal of statistical learning: given some lid en amples
LAST WEEK Unknown distr D from D +labels, learn a good h.

$$
h \text { dist } \operatorname{risk}_{D}(h)=\operatorname{Pr}_{x \sim D}[h(x) \neq \text { label }(x)]
$$

- Motivation: do we really need to restrict the hypothesis/concept class before starting learning? - yes! (No free lunch theorem)
- (PAC Learning): Learnability of a concept class H over domain X
- Informally, for any $\mathrm{f} \in H$ and any distribution D over X, given examples of the form $(x, f(x)$), we can learn a hypothesis ' h ' such that Risk_D (h) is < ϵ, with high prob. $((1-\delta)$, for some parameter $\delta)$
- Sample size only function of H, ϵ, δ (not distribution)
- Learned hypothesis need not belong to H (improper learning) Setting).
- (Agnostic): f need not belong to $H \rightarrow$ want the risk to be

$$
\leq \min _{h^{\prime} \in J t} \operatorname{risk}_{\mathscr{D}}\left(h^{\prime}\right)+\varepsilon
$$

GENERIC ALGORITHM

Empirical risk minimization: given the samples ($x, f^{\prime}(x) y$ find hypothesis $h \in H$ that minimizes the total error on the samples

- most natural algorithm == minimize training error
- How to do it efficiently? (learning half spaces - can do it in the realizable case.-)
- Don't care for now... maybe brute force over hypothesis class?
- When does it work? (outputs h with small gen -error).
- If sample is "representative" of distribution --- for every hypothesis in class, error on sample $\sim=$ error on distribution (ie. risk)

H: all linear threshold functions in 1-D.

$D:$

goal: lean with error (risk bound) ≤ 0.1
 15 samples.

- Informal statement: \#eramples needed depends on both hypothesis, class Q distribution (also on $\varepsilon, \delta .$.$) .$

REPRESENTATIVE SAMPLE
[applies to realizable U agnostic (ass)

- Let H be a hypothesis class and X be an input space with a distribution D on it, and let f be a target function. Sample $S \subseteq X$ is said to be ϵ-"representative" if for all h in H, we have:

$$
\left|\frac{1}{|S|} \operatorname{error}(S, h)-\operatorname{risk}_{D}(h)\right|<\epsilon
$$

- If we happen to get a representative sample, desired bound on risk! (why?)
- Is a sample ${ }^{\varepsilon}$ representative "with high probability"?

Claim: If we perform ERM on a ${ }^{\text {Erepepresentative sample } S \text {, we obtain }}$ a hyp. with risk \leq (best-risk-m-H) IE.

RANDOM SAMPLE IS REPRESENTATIVE WHP!

- Chernoff bound (Hoeffding). Suppose $X_{1}, X_{2}, \ldots X_{n}$ are n id samples from a distribution with mean μ and support $[a, b]$. Then we have
(Very useful.)

$$
\operatorname{Pr}\left[\left\lvert\, \frac{1}{n}\left(X^{\left.\left.X_{1}+\cdots+X_{n}\right)-\mu \mid>\epsilon\right] \leq 2 \exp \left(-\frac{\epsilon^{2} n}{(a-b)^{2}}\right)} \rightarrow \frac{1}{n^{2} \xi^{4}}\right.\right.\right.
$$

- Note: exponential dependence on n

$$
\begin{gathered}
\operatorname{Pr}[\left\lvert\, \underbrace{}_{\text {sample avg }-\mu \mid>\varepsilon]} \begin{array}{c}
\text { exponentially small in } \\
\text { \#samples. }
\end{array}\right. \\
\text { Suppose }(a-b)^{2}=1 \\
n \approx \frac{1}{\varepsilon^{2}} \cdot \log \left(\frac{2}{\delta}\right)
\end{gathered}
$$

FINITE CLASSES ARE LEARNABLE
ε : accuracy

H: finite hypothesis class.
(8:) prob. parameter confidence paras-
confrienal|

- Claim: for any X and distribution D over it, a sample of size $O\left(\frac{1}{\epsilon^{2}} \log \frac{|H|}{\delta}\right)$ is representative with prob. at least $1-\delta$
- Proof idea: first start with a single hypothesis $h \in H$; what is the probability that error on sample $\sim=$ error on D ?

Want to show:

$$
m=4 \cdot \frac{1}{\varepsilon^{2}} \cdot \log \left(\frac{2 H 1}{\delta}\right)
$$

A random sample with m examples is ε-representative with prob. $\geqslant 1-\delta \rightarrow \forall h \in J t \quad \left\lvert\, \frac{\operatorname{lerror}}{|s|}(s, h)-\right.$ risk $A_{D}(h) \mid \leq \varepsilon$.

ie, $\quad \operatorname{Pr}\left[\left|\frac{1}{|S|} \operatorname{error}(S, h)-\operatorname{risk}_{\theta}(h)\right|>\varepsilon\right] \leq \frac{\delta}{|H|}$
sample-based distr.

$$
h
$$

Let $\quad Y_{i}= \begin{cases}1 & \text { if sample } h\left(x_{i}\right) \neq \text { label }\left(x_{i}\right) \\ 0 & \text { if } h\left(x_{i}\right)=\text { label }\left(x_{i}\right)\end{cases}$

$$
\operatorname{Pr}_{x \sim D}\left[h\left(x_{0}\right) \neq\right. \text { laval }
$$

If we sample $x_{i} \sim D$, how is Y_{i} distributed?

$$
Y_{i}=\left\{\begin{array}{lll}
1 & w \cdot p & R(h) \\
0 & w \cdot p & 1-R(h)
\end{array}\right\} \Rightarrow \mu \text { of this } \underset{\text { distr }}{\text { sample }}=R(h)
$$

Chernoff [Hoeffling]: $\operatorname{Pr}\left[\left|\frac{y_{1}+\cdots+y_{m}}{m}-\mu\right|>\varepsilon\right] \leq 2 \cdot e$
$\leq \delta /(1+1$
(plugging $m m=\frac{4}{\varepsilon^{2}} \log \left(\frac{2 H 1}{\delta}\right)$

Union bound:
Want: some $\frac{\text { event with prob. } 99 \% \text {. }}{\varepsilon}$.

$$
\operatorname{Pr}[\text { event does not occur }] \leq 1 \%_{0} \text {. }
$$

Say event = want A and B to hold. $\leq \frac{1}{200}$.

$$
\text { E not occurring } \equiv \text { either } A \underbrace{\text { doesut occur. }}_{\text {dent occior or }}
$$ B doesut $\underbrace{\text { occur }}_{\leq \frac{1}{200}}$.

WHAT ABOUT INFINITE CLASSES?

- Note: if sample is representative, we are good! (modulo inefficiency of ERM)
- What if we can divide hypotheses into finitely many "classes"?
- Example of threshold functions on a line

GROWTH FUNCTION OF A CLASS

- For a class H and an input space X, we can define a notion of "growth function"

LEARNABILITY IN TERMS OF THE GROWTH FUNCTION

- Theorem: Suppose $\tau_{H}(m)$ is an upper bound on the total number of "distinct sign patterns" possible for any sample of size m. Then for any X, D, if we take a sample S of size m, we have, with prob. 1- δ,

$$
\sup _{h \in H}|\operatorname{err}(h, S)-\operatorname{err}(h, D)| \leq \frac{4+\sqrt{\log \tau_{H}(2 m)}}{\delta \sqrt{2 m}}
$$

HOW TO BOUND GROWTH FUNCTION?

- Shattering.
- VC dimension.

SAUER-SHELAH LEMMA (VAPNIK-CHERVONENKIS)

- Lemma. Let H be a hypothesis class of finite VC dimension d. Then for every m, we have:

