THEORY OF MACHINE LEARNING

LECTURE 4 .

PAC MODEL, VC DIMENSION

RECAP - VALIANT'S THEORY OF (SUPERVISED) LEARNING

$$
\begin{aligned}
& \text { (concept / hyp) } \\
& \text { labeling function }
\end{aligned}
$$

- Learnability (from examples). [Suppose D is fixed.] We say that a concept class is "learnable" if there exists an [efficient] algorithm A with the property: for all $\epsilon>0$, there exists m (number of samples) such that when given m i.i.d. samples from D along with their labels, A produces a hypothesis h with risk less than ϵ, with prob. $>=0.9$

$$
\operatorname{Re}_{\substack{D_{\sim}, l}}(h)=\operatorname{Pr}_{\substack{ \\x_{\sim}}}(h(x) \neq l(x))
$$

- (Recall, risk = expected error on sample from distribution)
- Beyond examples? (technically yes, e.g., teacher/student)

RECAP: NO FREE LUNCH THEOREM
inductive bias

- Motivation: do we really need to restrict the hypothesis/concept class before starting learning? - yes!
- No free lunch: (informal) there is no "universal" learner, even if it's allowed to be inefficient (even for binary classification under a uniform distribution, unless it "sees most of the labels")
- Proof via a counting argument - too many hypotheses

It: - Class of hypotheses

- all 100 layer NNE with width 100 K .

TODAY'S PLAN

- Definition. (Agnostic) PAC learning
- Finite classes are PAC learnable
- Dealing with infinite classes: 'growth function' and VC dimension

PAC LEARNING (REALIZABLE CASE)
H: bunch of
(over some domain X). hypotheses over X.

- Learnability of a concept class. A concept class H is PAC learnable (over domain X) if there exists an algorithm A that for all $\epsilon, \delta>0$ and distributions D, has the following property:

$$
\stackrel{2^{1 / \varepsilon^{2}} \cdot 2^{1 / \delta} .}{1 / 0}
$$

\exists a function $m(\varepsilon, \delta)$

- given $m(\epsilon, \delta)$ samples $(x, f(x)$), where $x \sim D$ and f is a (unknown) function (nH) it outputs h with risk $\frac{\text { at most } \epsilon \text { with probability }}{0.05}$ least $\underset{2 / 3}{1-8}$
- (The sample size must not depend on D) is in $5 t$.).
- As such heed not belong to H (improper learning)

- goal is to find true label function f
- declare success, if we find h that has risk $\triangleq \varepsilon \quad h \leadsto f$.

$$
\text { Concept } \equiv \text { hypothesis. }
$$

Example of $3 t: \quad X=\mathbb{R}^{2}$
$\operatorname{sign}($ all linear classifiers.

$$
\begin{aligned}
& a x+b y+c \\
& X=R^{2}
\end{aligned}
$$

$$
\operatorname{sign}(-(a x+b y+c))
$$

It: all rectangles
$X: \mathbb{R}$
H: all thushold functions

$X=\mathbb{R}^{100} ; H:$ all depth 2 nus with 100 inputs, every gate is Refl.

PAC LEARNING (NON-REALIZABLE CASE)
(agnostic)

- Learnability of a concept class. A concept class H is agnostically PAC learnable (over domain X) if there exists an algorithm \mathbf{A} that for all $\epsilon, \delta>0$ and distributions D, has the following property:
- given $m(\epsilon, \delta)$ samples $(x, f(x))$, where $x \sim D$ and f is a (unknown) function not necessarily in H, it outputs h with risk at most ϵ more than the risk of the h^{\prime} in H that is "closest" to f, with probability at least $1-\delta$.
- (The sample size must not depend on D)
- Again, h need not belong to H (improper learning) \rightarrow can find h with risk $\leq 0.1+\varepsilon$. "weakens" the inductive bias.

EVERY FINITE CLASS IS PAC LEARNABLE (EVEN AGNOSTIC)
H: $\left\{h_{1}, h_{2}, \ldots, h_{s}\right\}$; input space X (potutialey. $\begin{gathered}\text { infinite })\end{gathered}$
Theorem: It is PAC-learnable. $(x, f(x))$

- Suppose H has only finitely many hypotheses (input space X may still be infinite)
- Generic algorithm: empirical risk minimization (ERM)
- get (m examples) (well fix m later)
- find $h \in \mathcal{t}$ that is consistent with all these examples.
- output (onesuch) h.
example: $(x, f(x))$
Sample S : collection Senthersplen.
1 - get merramples
all these - find $h \in J t$ that minimizes "empirical risk"
- output h
- Key idea: "representative sample"

$1 / \varepsilon^{2}$ samples
"empirical risk"

$$
\begin{aligned}
& \text { 'empirical risk" } \\
& \text { of } h \otimes \text { a sample }=\frac{1}{|S|} \cdot \sum_{x \in S} 1_{h(x) \neq f(x)}
\end{aligned}
$$

(minimizing training error)

When is ERM had?

- if there are too few examples ($i e, m$ is too small)
- just got unlucky with the examples?

REPRESENTATIVE SAMPLE

- Let H be a hypothesis class and X be an input space with a distribution D on it, and let f be a target function. Sample $S \subseteq X$ is said to be ϵ-"representative" if for all h in H, we have:

RANDOM SAMPLE IS REPRESENTATIVE WHP!

- Chernoff bound (Hoeffding). Suppose $X_{1}, X_{2}, \ldots X_{n}$ are n iid samples from a distribution with mean μ and support $[a, b]$. Then we have

$$
\operatorname{Pr}\left[\left|\frac{1}{n}\left(X_{1}+\cdots+X_{n}\right)-\mu\right|>\epsilon\right] \leq 2 \exp \left(-\frac{\epsilon^{2} n}{(a-b)^{2}}\right)
$$

WHAT ABOUT INFINITE CLASSES?

- Note: as long as sample is representative, we are good!
- What if we can divide hypotheses into finitely many "classes"?
- Example of threshold functions on a line

GROWTH FUNCTION OF A CLASS

- For a class H and an input space X, we can define a notion of "growth function"

