THEORY OF MACHINE LEARNING

LECTURE 5

PAC MODEL, VC DIMENSION

LAST WEEK

- Motivation: do we really need to restrict the hypothesis/concept class before starting learning? - yes! (No free lunch theorem)
- (PAC Learning): Learnability of a concept class H over domain X
 - Informally, for any $f \in H$ and any distribution D over X, given examples of the form (x, f(x)), we can learn a hypothesis 'h' such that Risk_D (h) is $< \epsilon$, with high prob. $((1 \delta)$, for some parameter δ)
 - Sample size only function of H, ϵ , δ (not distribution)
 - Learned hypothesis need not belong to H (improper learning)
- (Agnostic): f need not belong to H

GENERIC ALGORITHM

- Empirical risk minimization: given the samples (x, f(x)), find hypothesis $h \in H$ that minimizes the total error on the samples
 - most natural algorithm == minimize training error
- How to do it efficiently?
 - Don't care for now... maybe brute force over hypothesis class?
- When does it work?
 - If sample is "representative" of distribution --- for <u>every</u> hypothesis in class, error on sample ~= error on distribution (i.e. risk)

REPRESENTATIVE SAMPLE

- Let H be a hypothesis class and X be an input space with a distribution D on it, and let f be a target function. Sample $S \subseteq X$ is said to be ϵ -"representative" if **for all** h in H, we have: $|\frac{1}{|S|} \operatorname{error}(S, h) \operatorname{risk}_{D}(h, f)| < \epsilon$
- If we happen to get a representative sample, we have desired bound on risk!
- Is a sample representative "with high probability"?

RANDOM SAMPLE IS REPRESENTATIVE WHP!

• Chernoff bound (Hoeffding). Suppose $X_1, X_2, ... X_n$ are n iid samples from a distribution with mean μ and support [a, b]. Then we have

$$\Pr\left[\left|\frac{1}{n}\left(X_1 + \dots + X_n\right) - \mu\right| > \epsilon\right] \le 2\exp\left(-\frac{\epsilon^2 n}{(a-b)^2}\right)$$

Note: exponential dependence on n

FINITE CLASSES ARE LEARNABLE

- <u>Claim</u>: for any X and distribution D over it, a sample of size $O\left(\frac{1}{\epsilon^2}\log\frac{|H|}{\delta}\right)$ is representative with prob. at least $1-\delta$
- Proof idea: first start with a single hypothesis $h \in H$; what is the probability that error on sample ~= error on D?

WHAT ABOUT INFINITE CLASSES?

- Note: if sample is representative, we are good!
 (modulo inefficiency of ERM)
- What if we can divide hypotheses into finitely many "classes"?

Example of threshold functions on a line

GROWTH FUNCTION OF A CLASS

 For a class H and an input space X, we can define a notion of "growth function"

LEARNABILITY IN TERMS OF THE GROWTH FUNCTION

• Theorem: Suppose $\tau_H(m)$ is an upper bound on the total number of "distinct sign patterns" possible for any sample of size m. Then for any X, D, if we take a sample S of size m, we have, with prob. $1-\delta$,

$$\sup_{h \in H} |err(h, S) - err(h, D)| \le \frac{4 + \sqrt{\log \tau_H(2m)}}{\delta \sqrt{2m}}$$

HOW TO BOUND GROWTH FUNCTION?

• Shattering.

VC dimension.

SAUER-SHELAH LEMMA (VAPNIK-CHERVONENKIS)

• Lemma. Let H be a hypothesis class of finite VC dimension d. Then for every m, we have: