THEORY OF MACHINE LEARNING

LECTURE 3

PAC MODEL, VC DIMENSION

RECAP – VALIANT'S THEORY OF (SUPERVISED) LEARNING

• Learnability (from examples). [Suppose D is fixed.] We say that a concept class is "learnable" if there exists an [efficient] algorithm $\bf A$ with the property: for all $\epsilon > 0$, there exists $\bf m$ (number of samples) such that when given $\bf m$ i.i.d. samples from D along with their labels, $\bf A$ produces a hypothesis $\bf h$ with risk less than ϵ , with prob. >= 0.9

- (Recall, risk = expected error on sample from distribution)
- Beyond examples? (technically yes, e.g., teacher/student)

RECAP: NO FREE LUNCH THEOREM

- Motivation: do we really need to restrict the hypothesis/concept class before starting learning? - yes!
- No free lunch: (informal) there is no "universal" learner, even if it's
 allowed to be inefficient (even for binary classification under a uniform
 distribution, unless it "sees most of the labels")
- Proof via a counting argument too many hypotheses

TODAY'S PLAN

- Definition. (Agnostic) PAC learning
- Finite classes are PAC learnable
- Dealing with infinite classes: 'growth function' and VC dimension

PAC LEARNING (REALIZABLE CASE)

- Learnability of a concept class. A concept class H is PAC learnable (over domain X) if there exists an algorithm A that for all $\epsilon, \delta > 0$ and distributions D, has the following property:
 - given $m(\epsilon, \delta)$ samples (x, f(x)), where $x \sim D$ and f is a (unknown) function in H, it outputs h with risk at most ϵ with probability at least 1δ .
- (The sample size must not depend on D)
- As such h need not belong to H (improper learning)

PAC LEARNING (NON-REALIZABLE CASE)

- Learnability of a concept class. A concept class H is agnostically PAC learnable (over domain X) if there exists an algorithm $\bf A$ that for all $\epsilon, \delta > 0$ and distributions D, has the following property:
 - given $m(\epsilon, \delta)$ samples (x, f(x)), where $x \sim D$ and f is a (unknown) function <u>not</u> <u>necessarily in H</u>, it outputs h with risk at most ϵ more than the risk of the h in H that is "closest" to f, with probability at least 1δ .
- (The sample size must not depend on D)
- Again, h need not belong to H (improper learning)

EVERY FINITE CLASS IS PAC LEARNABLE (EVEN AGNOSTIC)

- Suppose H has only finitely many hypotheses (input space X may still be infinite)
- Generic algorithm: empirical risk minimization (ERM)

Key idea: "representative sample"

REPRESENTATIVE SAMPLE

Let H be a hypothesis class and X be an input space with a distribution D on it, and let f be a target function. Sample $S \subseteq X$ is said to be ϵ —"representative" if **for all** h in H, we have:

$$|\frac{1}{|S|}$$
 error (S, h) - risk_D (h, f) $| < \epsilon$

RANDOM SAMPLE IS REPRESENTATIVE WHP!

• Chernoff bound (Hoeffding). Suppose $X_1, X_2, ... X_n$ are n iid samples from a distribution with mean μ and support [a, b]. Then we have

$$\Pr\left[\left|\frac{1}{n}\left(X_1 + \dots + X_n\right) - \mu\right| > \epsilon\right] \le 2 \exp\left(-\frac{\epsilon^2}{(a-b)^2}\right)$$

WHAT ABOUT INFINITE CLASSES?

- Note: as long as sample is representative, we are good!
- What if we can divide hypotheses into finitely many "classes"?

Example of threshold functions on a line

GROWTH FUNCTION OF A CLASS

 For a class H and an input space X, we can define a notion of "growth function"