
THEORY OF MACHINE LEARNING

LECTURE 3

PAC MODEL, VC DIMENSION



RECAP – VALIANT’S THEORY OF (SUPERVISED) LEARNING

 Learnability (from examples).  [Suppose D is fixed.] We say that a 

concept class is “learnable” if there exists an [efficient] algorithm A

with the property: for all 𝜖 > 0, there exists m (number of samples) such 

that when given m i.i.d. samples from D along with their labels, A

produces a hypothesis h with risk less than 𝜖, with prob. >= 0.9

 (Recall, risk = expected error on sample from distribution)

 Beyond examples? (technically yes, e.g., teacher/student)



RECAP: NO FREE LUNCH THEOREM

 Motivation: do we really need to restrict the hypothesis/concept class 

before starting learning? – yes!

 No free lunch: (informal) there is no “universal” learner, even if it’s 

allowed to be inefficient (even for binary classification under a uniform 

distribution, unless it “sees most of the labels”)

 Proof via a counting argument – too many hypotheses



TODAY’S PLAN

 Definition. (Agnostic) PAC learning 

 Finite classes are PAC learnable

 Dealing with infinite classes: ‘growth function’ and VC dimension



PAC LEARNING (REALIZABLE CASE)

 Learnability of a concept class. A concept class H is PAC learnable 

(over domain X) if there exists an algorithm A that for all 𝜖, 𝛿 > 0 and 

distributions D, has the following property:

 given 𝑚(𝜖, 𝛿) samples (x, f(x)), where x ~ D and f is a (unknown) function in H, it 

outputs h with risk at most 𝜖 with probability at least 1 − 𝛿.

 (The sample size must not depend on D)

 As such h need not belong to H (improper learning)



PAC LEARNING (NON-REALIZABLE CASE)

 Learnability of a concept class. A concept class H is agnostically PAC 

learnable (over domain X) if there exists an algorithm A that for all 

𝜖, 𝛿 > 0 and distributions D, has the following property:

 given 𝑚(𝜖, 𝛿) samples (x, f(x)), where x ~ D and f is a (unknown) function not 

necessarily in H, it outputs h with risk at most 𝜖 more than the risk of the h’ 

in H that is “closest” to f, with probability at least 1 − 𝛿.

 (The sample size must not depend on D)

 Again, h need not belong to H (improper learning)



EVERY FINITE CLASS IS PAC LEARNABLE (EVEN AGNOSTIC)

 Suppose H has only finitely many hypotheses 

(input space X may still be infinite)

 Generic algorithm: empirical risk minimization (ERM)

 Key idea: “representative sample”



REPRESENTATIVE SAMPLE

 Let H be a hypothesis class and X be an input space with a distribution D 

on it, and let f be a target function. Sample 𝑆 ⊆ 𝑋 is said to be 

𝜖 −“representative” if for all h in H, we have:

| 
1

|𝑆|
error (S, h) – riskD (h, f) | < 𝜖



RANDOM SAMPLE IS REPRESENTATIVE WHP!

 Chernoff bound (Hoeffding). Suppose 𝑋1, 𝑋2, …𝑋𝑛 are n iid samples 

from a distribution with mean 𝜇 and support [a, b]. Then we have

Pr
1

𝑛
𝑋1 +⋯+ 𝑋𝑛 − 𝜇 > 𝜖 ≤ 2 exp (−

𝜖2

𝑎−𝑏 2)



WHAT ABOUT INFINITE CLASSES?

 Note: as long as sample is representative, we are good!

 What if we can divide hypotheses into finitely many “classes”?

 Example of threshold functions on a line



GROWTH FUNCTION OF A CLASS

 For a class H and an input space X, we can define a notion of “growth 

function”


