THEORY OF MACHINE LEARNING

LECTURE 3

PAC MODEL, GENERALIZATION

Homeworle 1:

RECAP - VALIANT'S THEORY OF (SUPERVISED) LEARNING

- Formal definition of learning

$$
\text { Naive: } \quad h(x)=l(x) \forall x
$$

- Formalizing generalization via "distributional assumption"
- X: space of (all possible) inputs - D: prob. distribution aver X
- Y: set of labels / outputs (Classification)
- "Ground truth label" (concept). $\quad \ell: X \mapsto \underset{\sim}{Y}$: function mapping inputs to outputs
- Goal of learning
- "Learn" a hypothesis h such that $h(x)=\ell(x)$ for all "inputs of interest"
- Unknown probability distribution D over X; achieve small "risk" or "generalization error"
- (Definition of risk): $\operatorname{Pr}_{\substack{x \sim y\}}}^{\mathcal{D}}[h(x) \neq \ell(x)]$

Most common formal model to reason about learning

RECAP - VALIANT'S THEORY OF (SUPERVISED) LEARNING

$$
\text { input sample } S=\left\{\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots,\left(x_{m}, y_{m}\right)\right\} \text {. }
$$

(unknown to leaper)

- Learnability (from examples). [Suppose D is fixed.] We say that a concept is "learnable" if there exists an [efficient] algorithm A with the property: for all $\epsilon>0$, there exists m (number of samples) such that when given m i.i.d. samples from D along with their labels, \mathbb{A} produces a hypothesis h with risk less than ϵ, with prob. $>=0.9$
- Beyond examples? (technically yes, e.g., teacher/student)
leaning
alpo.
A: $(x \times y)^{m} \rightarrow H \rightarrow$ possible output hypotheses.

RECAP - VALIANT'S THEORY OF (SUPERVISED) LEARNING

- Learnability (from examples). [Suppose D is fixed.] We say that a concept class is "learnable" if there exists an [efficient] algorithm A with the property: for all $\epsilon>0$, there exists m (number of samples) such that when given m i.i.d. samples from D along with their labels, A produces a hypothesis h with risk less than ϵ, with prob. $>=0.9$
- Beyond examples? (technically yes, e.g., teacher/student)

TODAY'S PLAN

$$
\mathcal{H}:\left\{\begin{array}{c}
\text { collection of functions } \\
h: x \rightarrow y .
\end{array}\right.
$$

ℓ

- Concept class (or class of hypothesis)
- Assume that ground-truth label is (at least close to) a function in \hat{H}
- "No free lunch theorem" (informal). There is no "universal" (concept class agnostic) learning algorithm
- (Agnostic) PAC learning
- Finite classes are PAC learnable

COMMON ML ASSUMPTIONS

Simple structure

- (90s) Data is (approx.) linearly separable
right set of features, you can
on cars of pes happening long as you can choose the
con cert predict label via linear separators.
- (these days) There exists 100-layer NN with width < ... that achieves low error on task

$$
[1]
$$

(more complex but still known - structure on hypothesis
class.) class.)

- "Inductive bias" - assuming specific structure on concept
- What class of models do we use? (for a given task.).
- Maybe.. we don't need to start with knowing a concept class

NO FREE LUNCH THEOREM

- Informal: there is no "universal" learner, even if it's allowed to be inefficient (even for binary classification)
- Theorem. Let D be the uniform distribution on some input space X.

Consider any (possibly randomized) algorithm A that uses < $|X| / 2$ i.i.d. examples and produces $h: X \rightarrow\{0,1\}$. There exists a hypothesishfor $)|x| / 16$ which A incurs risk $1 / 10$, with probability $>\overparen{1 / 10 \text {.) }}$

- (Recall def of "learnable" - fails with $\epsilon=1 / 10$ and failure prob. $\widetilde{0.1}$)

INFORMAL PROOF
if input to A is
iv, $\left\{\left(x, y_{1}\right),\left(x, y_{2}\right) \ldots\left(x_{m}, y_{m}\right)\right\}$ in given.

- Extra assumption: suppose A is deterministic; will show theorem with weaker constants
- Main idea: 'too many Boolean functions' on X
$2^{|x|}$ Boolean frs.

$$
\begin{gathered}
|H|=2^{|x|} \\
|U| \leq \begin{array}{c}
|x| \\
m
\end{array} \cdot 2^{m}
\end{gathered}
$$

if $m<|x| / 16$, it tunsount that $|u| \ll|H|$ I some h that cannot be learned exactly.

- But... the goal is to obtain an h^{\prime} that agree with h on 907 of inputs. ($L \Rightarrow$ risk is <0.1)

$$
(6)^{\prime}
$$

$$
h \text { is a }|x| \text {-bi tstring. }
$$

(ecsicile) how many $|x|$-bit strings differ from h in $\leq|x| / 10$ places?

$$
\left.\binom{|x|}{1}+\binom{|x|}{2}+\ldots+\binom{|x|}{|x| / 10}\right) ~\binom{|x|}{|x| / 10} ~ o 2_{m}|x|
$$

Can verify: $\binom{|x|}{m} \cdot 2^{m} \cdot\binom{|x|}{|x| / 10}<2^{|x|}$
$\Rightarrow \exists \mathrm{h}$ that differs in $\frac{|x|}{10}$ places from ALL possible outputs of alpo.

$$
\Rightarrow \text { th s.t. risk }>0.1 \text { (with prob 1.) }
$$

PAC LEARNING

- Moral: must suppose H is a known class of hypotheses (concept class)
- Learnability of a concept class. A concept class H is PAC learnable (over domain X) if there exists an algorithm \boldsymbol{A} that for all $\epsilon, \delta>0$ and distributions D, takes $m(\epsilon, \delta)$ samples and produces h with risk at most ϵ with probability at least $1-\delta$.
- (The sample size must not depend on D)

EVERY FINITE CLASS IS PAC LEARNABLE

