Valiant's Theory The PAC Model

Theory of Machine Learning - Spring 22

January 13, 2022

Last class

Logistics

- Course webpage: Canvas, can find lecture schedule, slides, scribe template, ...
- TA: Chris Harker
- Scribe for today?

ML until the 1980 s

- Many informal notions of learning: Rosenblatt and the "perceptron" algorithm, neural networks, ...
- Limitations of perceptrons
- No formal theory to reason about, no clear definitions

Question: Can we formally define "learning"?

Theory of the Learnable

- Leslie Valiant 1983 - Theory of the Learnable (CACM)
- Drawing the boundaries of learnability - how to define it? what is possible?
- Really a theory of supervised learning
- I.e., deals with classification or prediction problems
- given some description of a "scenario". what to do next?
- given an input mplesediction - label.

Theory of the Learnable
image: Set of all pixel values
Input: "features" of input

- Hypothesis/model: function from input to prediction/label hypothesis $h: I \rightarrow \mathcal{L}$ (all inputs) (all labels)
- Definition of a learning algorithm. an algorithm that can find a (good hypothesis) without explictly being told what it is!
- what all does a learning alg. need?

Most natural way. Give examples of inputs and their labels

Good hypothesis:
"Low error": agreement with "true" label.
Qu: should it agree on all inputs?
Input: $\quad x \sim$ collection of feature values.

$$
\left(\begin{array}{c}
\text { collection of feature values. } \\
\hat{\rho} \mathbb{R}^{m} \text {. } \\
\text { pixel valuer }
\end{array}\right.
$$

pixel 1 -value pixel z value
Ans: No, but we must have agreement on pill "inputs of interest".

Good hypothesis?

- Must do well on given inputs (hopefully perfectly)
- Must also do well on "unseen" inputs (generalization)
- How to formalize this?

Valiant's key assumption. Assume an "input distribution" (unknown to the learner)
We care about error "wot" this distibution. of all ip puts.

Good hypothesis
assuming there is a true label for each input

\exists some (unknown to learner) distr D on the space of all inf uts
Risk minimization is the goal :
Given a hypothesis h, a true label function l, the risk of h writ. a dist $D:=R_{D}(h)=\operatorname{Pr}[h(x) \neq$ $x \sim D \quad l(x)]$. Definition of learnability
\rightarrow We say that a hypothesis (ℓ) is learnable, $y \neq D$ for any $\varepsilon>0$, there exists an me (training sing) such that given m iid examples $\underline{x}_{1}, \ldots, x_{\text {and }}$ and $l\left(x_{1}\right)$, $l\left(x_{m}\right)$, we can produce $a(h)$ st. $R_{D}(h) \leq \varepsilon$, with $\mathrm{prob}^{2}>90 \%$.

- I an efficient algorithm A.
(ply in m - \#training examples
that takes $\left(x_{1}, \ell\left(x_{1}\right)\right),\left(x_{2}, \ell\left(x_{2}\right)\right) \ldots$

* Inherently a probabilistic
* Training samples come form same dist as test

Complexity of ground truth label
Importance of hypothesis class
Label function $l: I \xrightarrow{\left(\mathbb{R}^{n \times}\right)} L$
How "rich" can this fur be?

- Sample complexity If training time depend on 1 "how complex" l is.

$$
\begin{aligned}
& \text { depend on } 11 \\
& \operatorname{sim}\left(x_{1}^{2}+3 x_{2}+x_{4}\right)
\end{aligned}
$$

- Assume: label function ℓ is in a certain
"hypothesis class" \mathcal{H} (which is known to also
He: set of all polynomials of degree d in A.). input features x_{1}, \ldots, x_{m}.

Learnability with finite hypothesis classes
Theorem: (informal): Any finite hypothesis, classis learnable with $\sim \log |J t|$ training examples.央
$\forall \varepsilon$, you can produce h such that

$$
R_{D}(h) \leq \varepsilon \quad \text { w.p. } \geqslant 90 \%_{0}
$$

using $\frac{\log |H|}{\varepsilon^{2}}$ samples.

