THEORY OF MACHINE LEARNING

LECTURE 3

PAC MODEL, GENERALIZATION

RECAP – VALIANT'S THEORY OF (SUPERVISED) LEARNING

Formal definition of learning

- Formalizing generalization via "distributional assumption"
- X: space of (all possible) inputs
- Y: set of labels / outputs
- "Ground truth label" (concept). $\ell: X \mapsto Y:$ function mapping inputs to outputs
- Goal of learning
 - "Learn" a hypothesis h such that $h(x) = \ell(x)$ for all "inputs of interest"
 - Unknown probability distribution D over X; achieve small "risk" or "generalization error"
 - (Definition of risk): $\Pr_{\{x \sim X\}}[h(x) \neq \ell(x)]$

Most common formal model to reason about learning

RECAP – VALIANT'S THEORY OF (SUPERVISED) LEARNING

• Learnability (from examples). [Suppose D is fixed.] We say that a concept class is "learnable" if there exists an [efficient] algorithm $\bf A$ with the property: for all $\epsilon > 0$, there exists $\bf m$ (number of samples) such that when given $\bf m$ i.i.d. samples from D along with their labels, $\bf A$ produces a hypothesis $\bf h$ with risk less than ϵ , with prob. >= 0.9

Beyond examples? (technically yes, e.g., teacher/student)

RECAP – VALIANT'S THEORY OF (SUPERVISED) LEARNING

• Learnability (from examples). [Suppose D is fixed.] We say that a concept class is "learnable" if there exists an [efficient] algorithm $\bf A$ with the property: for all $\epsilon > 0$, there exists $\bf m$ (number of samples) such that when given $\bf m$ i.i.d. samples from D along with their labels, $\bf A$ produces a hypothesis $\bf h$ with risk less than ϵ , with prob. >= 0.9

Beyond examples? (technically yes, e.g., teacher/student)

TODAY'S PLAN

- Concept class (or class of hypothesis)
 - ullet Assume that ground-truth label is (at least close to) a function in H
- "No free lunch theorem" (informal). There is no "universal" (concept class agnostic) learning algorithm
- (Agnostic) PAC learning
- Finite classes are PAC learnable

COMMON ML ASSUMPTIONS

- (90s) Data is (approx.) linearly separable
- (these days) There exists 100-layer NN with width < ... that achieves low error on task

- "Inductive bias" assuming specific structure on concept
- What class of models do we use?
- Maybe.. we don't need to start with knowing a concept class

NO FREE LUNCH THEOREM

- <u>Informal:</u> there is no "universal" learner, <u>even if it's allowed to be</u>
 <u>inefficient</u> (even for binary classification)
- Theorem. Let D be the uniform distribution on some input space X. Consider any (possibly randomized) algorithm A that uses $\langle |X|/2 | i.i.d.$ examples and produces $h: X \rightarrow \{0,1\}$. There exists a hypothesis h for which A incurs risk > 1/10, with probability > 1/10.
- (Recall def of "learnable" fails with $\epsilon=1/10$ and failure prob. 0.1)

INFORMAL PROOF

- Extra assumption: suppose A is deterministic; will show theorem with weaker constants
- Main idea: 'too many Boolean functions' on X

PROOF

PAC LEARNING

Moral: must suppose H is a known class of hypotheses (concept class)

- Learnability of a concept class. A concept class H is PAC learnable (over domain X) if there exists an algorithm A that for all $\epsilon, \delta > 0$ and distributions D, takes $m(\epsilon, \delta)$ samples and produces h with risk at most ϵ with probability at least 1δ .
- (The sample size must not depend on D)

EVERY FINITE CLASS IS PAC LEARNABLE