Theory of Machine Learning

Spring 2022 — Lecture 1

Course logistics, basics

Basic logistics

- Class hours:
 - Tue/Th: 10:45 12:05
 - Instructor: Aditya Bhaskara (MEB 3470)
 - Email: a.bhaskara@utah.edu
 - TA: Chris Harker (chris.harker@utah.edu)
- Course webpage: Canvas

COVID Logistics

gcloud.utah.edu

- Can join via Zoom or in-person (throughout the semester)
- Recordings will be made available (mild delays possible)
- Lecture notes scribe notes

Grading logistics

- Graduate class (how to navigate)
- (-0,+3] + 3 days of deadline is ok)

 Four HWs 60% of grade (Beyond that, ask...)
 - discussion encouraged please write up on your own
- Group project 25% of grade (group of 2 or 3 students)

 Scribe notes 15% of grade [20 projects... reading + presenting t implementation]. (each student scribes one lecture — signup sheet + template)

(jot down notes during the lecture, polish after going back-)

Overview

- "Foundations" of modern machine learning
 - How are ML algorithms different? (need to generalize to inputs you have never) Seen...
 - Optimization what we can show and what we can't
 - Regularization generalization Accelerated GD.
 - · Deep learning (some of the history
 - enpressibility, hardness vesults,

 Unsupervised learning

 generalization, learning guarantees.)

 (Bunch of data word discover underlying structure...)

Background in linear algebra, calculus, probability, ...

Four main themes

Definitions, Valiant's PAC model

Leslie Valiant. Probabilistically Approx Correct (PAC)

- how to formally say, "algorithm works on unseen data"? (basic setup in ML.)
- generalization bounds, VC dimension why is minimizing training error (ERM) the right thing to do?! (regularization, etc.)
- Rademacher complexity
- Optimization core of any ML algorithm
 - convergence rates, how to choose learning rates
 - · connection to "online" learning (boosting)

Four main themes

- Neural nets
 - basics, what they are and how difficult are they to train?
 generalization, robustness, how to reason? (much of the work is from 2015-on).

- Unsupervised learning
 - basic problems clustering and representation learning
 generative models