Theory of Machine Learning

Spring 2022 - Lecture 1

Course logistics, basics

Basic logistics

- Class hours:
- Tue/Th: 10:45-12:05
- Instructor: Aditya Bhaskara (MEB 3470)
- Email: a.bhaskara@utah.edu
- TA: Chris Harker (chris.harker@utah.edu)
- Course webpage: Canvas

COVID Logistics

gclond.utah•edu

- Can join via Zoom or in-person (throughout the semester)
- Recordings will be made available (mild delays possible)
- Lecture notes - scribe notes

Grading logistics
Lecture 2:

- Graduate class - (how to navigate)

$$
\begin{aligned}
& \text { (}-\infty,+3] \pm 3 \text { days of deadline is ok } \\
& \text { of grade }{ }^{\text {(ho wd that, ask... }} \text {. }
\end{aligned}
$$

- Four HWs -60% of grade (Beyond that, ask...
- discussion encouraged - please write up on your own Pdf.
- Group project - 25% of grade (groups of 2 or 3 students)
- Scribe notes -15% of grade $\rightarrow[20$ projects... reading + presenting $t+1$ implementation $]$. (each student scribes one lecture - signup sheet + template) (jot down notes during the lecture, polish after going back-.)

Overview

- "Foundations" of modern machine learning
- How are ML algorithms different? (need to generalize to inputs you have never)
Seen...
- Optimization - what we can show and what we cant
- Regularization generalization SGD; Ada Grad/Adam.
\rightarrow Accelerated $G D$.
- Deep learning (Some of the history,
expressibility, hardness results,
- Unsupervised learning generalization, leaping guarantees.)
(Bunch of data w discover underlying structure..)
Background in linear algebra, calculus, probability,

Four main themes

Definitions, Valiant's PAC model
Leslie Valiant.
Probabilistically Approx Correct (PAC)

- how to formally say, "algorithm works on unseen data"?
(baric setup in ML.)
- generalization bounds, VC dimension - why is minimizing training error (ERM) the right thing to do?!
(regulaingation, etc.)
- Rademacher complexity
- Optimization - core of any ML algorithm
- convergence rates, how to choose learning rates
- connection to "online" learning (boosting)

Four main themes

- Neural nets
- basics, what they are and how difficult are they to train?
- generalization, robustness, how to reason? ($\left.\begin{array}{c}\text { much of the work } \\ \text { is form 2015-on) }\end{array}\right)$
- Unsupervised learning
(basic problems - clustering and representation learning
- generative models

