LECTURE 4:

 DIVIDE \& CONQUER GRADUATE ALGORITHMS
ANNOUNCEMENTS

- Homework 1
- Submit PDF version - LaTex or Markdown->PDF
- Due: two thursdays from now

LAST CLASS: DATA STRUCTURES

- What is being stored?
- What operations need to be performed?
- Running time for each operation?
- How much memory used overall? (remember graphs)

Like a class' API; often we have trade-offs between these terms

LAST CLASS: DIVIDE AND CONQUER

- Classic paradigm

Divide step

Solve sub-proゆlems

Combine/"conquer"
FULL SOLUTION

DIVIDE \& CONQUER BASICS

- Useful when problem "cleanly" divides into sub-problems
- Analysis template: correctness by induction, complexity using "recurrences"
- Algorithmic analog of mathematical induction

EXAMPLE: MERGE SORT

Given an array $\mathrm{A}[0,1, \ldots, \mathrm{~N}-1]$ of distinct integers, place them in increasing order

- Partition into two sub-arrays B, C
- Sort recursively
- Merge arrays into A

Procedure MergeSort (A) :

if length $(A) \leq 2$, do brute force -- go over array and swap if necessary partition A into B and C of size ($1 / 2$) length (A) recursively sort B and C Merge B and C into A

Procedure Merge (B, C, A) :

denote length (A) by n
maintain two indices $i_{b}=i_{c}=0$
for $i=0, \ldots, n-1$:
write the smaller of $B\left[i_{b}\right]$ and $C\left[i_{c}\right]$ to $A[i]$ and increment the corresponding index (if index goes out of bounds, treat value as ∞)

CORRECTNESS

- Induction: base-case, inductive step
- Standard math: (a) prove statement for $\mathrm{n}=1$, (b) assuming statement holds for integers $r<n$, show that it holds for n
- Divide \& conquer: (a) procedure behaves correctly in base case, (b) combination produces right answer for full problem, assuming right answer for sub-problems

CORRECTNESS — MERGE PROCESS WORKS CORRECTLY!

RUNNING TIME

- Partition into two sub-arrays B, C
- Sort recursively
- Merge arrays into A

"SOLVING" RECURRENCES

, Semi-general methods

- Master theorem
- Akra-Bazzi theorem
- Recursion "tree"
- Plug-n-chug
- Guess and prove

EXAMPLE: SEARCHING IN A SORTED ARRAY

Given an array $A[0,1, \ldots, N-1]$, integers in increasing order, find if a query ' x ' is present in $A[]$

CORRECTNESS

(Even if something seems obvious, formalize why)

RUNNING TIME

CAN ONE DO BETTER THAN LOG2 N?

Given an array $A[0,1, \ldots, N-1]$, integers in increasing order, find if a query ' x ' is present in $A[]$

- Can partitioning into groups >2 help?
- Query model
- More generally, computational model

EXAMPLE: LONG MULTIPLICATION

$$
\begin{aligned}
& A=a_{1} a_{2} \ldots a_{n} \\
& B=b_{1} b_{2} \ldots b_{n}
\end{aligned}
$$

Find the product $A B$

- Isn't multiplication constant time?
- When would we multiply really long numbers?

STANDARD ALGORITHM

MULTIPLICATION

Each intermediate sum is shifted left! $]$ O
$\times 2142$

| 3864 | (1932×2) |
| ---: | ---: | ---: |
| 7728 | (1932×4) |
| 1932 | (1932×1) |
| 3864 | (1932×2) |
| 4138344 | |

DIVIDE AND CONQUER?

RUNNING TIME

CAN WE DO BETTER?

- Reason for hope: we need to compute only three terms $X Z,(X W+Y Z), Y W$
- Can we do using three multiplications?

THREE MULTIPLICATIONS

