Advanced Algorithms

Lecture 28: Course review

Announcements

- HW 6 due tomorrow (Friday)
- Final exam <u>next Wednesday</u> (**10:30 AM 12:30 PM**)
- Specific questions from old HWs, pls post on Piazza!

Course in a slide

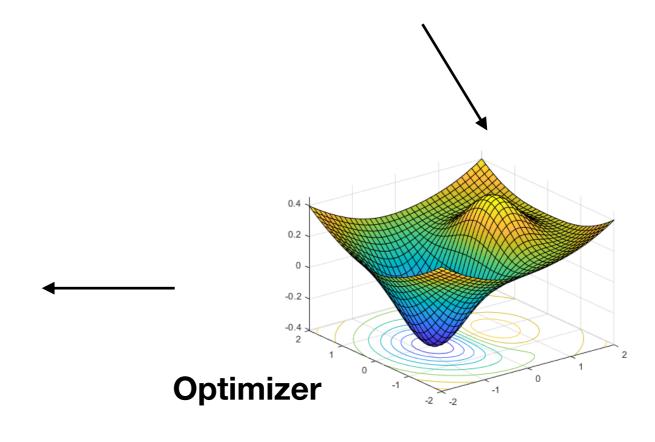
- Divide and Conquer, analysis via recurrences (linear time selection)
- Dynamic programming (will see)
- Greedy algorithms (easy to come up with, tricky to analyze) saw set + vertex cover; other basic problems like MST
- Shortest path in graphs (Dijkstra, "Bellman-Ford")
- Randomized algorithms: can give unexpected power! balls-and-bins (hashing), sampling & estimation (analysis tools)
- Optimization formulations of discrete problems (HW 6)
- Complexity classes: what are P, NP, NP-complete and NP-hard, notion of reductions

Review, dynamic programming

- <u>Key to solving using DP:</u> what is the right "sub-problem"? how many *different* sub-problems are there?
- Examples: cake cutting, subset sum, TSP

Recap - optimization

Instance of problem



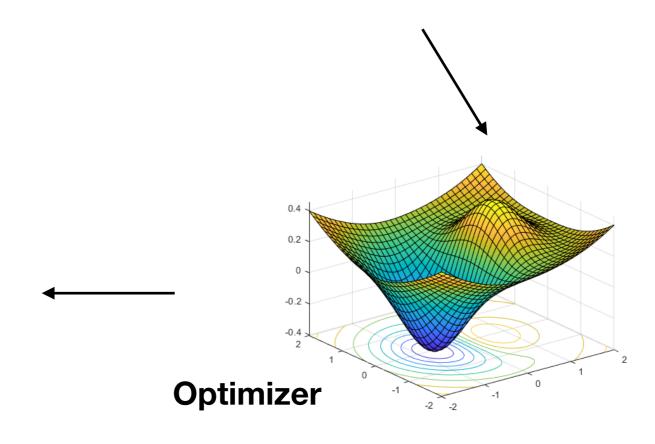
Optimization formulation

variables x₁, x₂, ... constraints objective

opt solution: $x_1 = 0, x_2 = 1, ...$

Recap - relax and round

Instance of problem



Optimization formulation

variables x₁, x₂, ... constraints objective

opt solution: $x_1 = 0, x_2 = 1, ...$

Recap: vertex cover