
Advanced Algorithms
Lecture 21: Optimization and linear programming



Announcements

• HW 5 out — due Wednesday Nov 20 

• Next Tuesday (Nov 12): Guest lecture by Suresh Venkat on 
Algorithmic Fairness-



Optimization

Goal: maximize or minimize a function over a “domain”



Problems —> optimization
Instance of problem

variables x1, x2, … 
constraints 
objective

Optimizer

opt solution: 
x1 = 0, x2 = 1, …

Solution to problem instance

Optimization formulation
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Important aspects

• How to choose variables? (must help us obtain solution to original) 

• Optimizer knows nothing about original problem or instance (only 
knows constraints, variables, …) — requires proof/argument 

• Important to ensure that opt problem can be solved efficiently: 

• how many variables/constraints? 

• discrete/continuous domain 

• type of constraints & objective (linear, quadratic, etc.)
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Examples from last class

• Set Cover 

• Matching — assigning gifts to children 

• Minimum spanning tree
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Spanning tree

Problem:  let G = (V, E) be a (simple, undirected) graph with edge 
weights {we} (>0). Pick a subset of the edges, such that (a) all vertices 

are “connected”, (b) total weight of edges is minimized

• What are variables? 

• Constraints? 

• Objective?

Easy:   xe for each edge,  minimize sum of we xe
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Constraints for MST

• Try 1:  total number of edges = n-1 

• Try 2:  add constraint that one edge out of every vertex is chosen 

• Try 3:  in every cycle of size r, make sure at most (r-1) edges are 
chosen  — exponentially many constraints 

• Alternate: make sure at least one path from u — v is “present” for 
each pair uv  (constraints aren’t linear any more)

Ensuring that every vertex is connected to every other …
Variables : see
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“Standard” formulation for MST

• One constraint for every subset of vertices 

• Idea: for any subset, at least one edge going “out of it” must be in 
MST
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“Validity” of formulation

• Must prove: any feasible solution to set of constraints yields a 
valid solution to original problem
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We rgue : if there is no path from u - su

then there exists a constraint that is violated
.
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- To prove validity of formulation
,

we must

also ensure
that for all feasible solutions

to originally ,
we have a solution

to the opt problem . [ not  
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Recap
Instance of problem

variables x1, x2, … 
constraints 
objective

Optimizer

opt solution: 
x1 = 0, x2 = 1, …

Solution to problem instance

Optimization formulation
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Efficiency of optimizers

• Linear programs — real valued variables, linear constraints, linear 
objective 

• “Convex” programs — real valued variables, convex constraints, 
minimize convex objective 

• Good heuristics for “integer linear programs” (esp binary valued), 
“quadratic programming”, …

What optimization problems can be solved efficiently?

Most optimizers are iterative algorithms — constantly improve solution
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Linear programming

• Clean geometric interpretation 

• Many “operations research” problems (e.g. “maximum flow”)-
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Geometry of LP

• Constraints half-spaces 

• Feasible region “polytope” 

minimize  x1 + x2  subject to 
x1 >= 0 

x1 + 3x2 <= 4 
2x1 + x2 >= -1
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Simplex algorithm

• Local search on the “corners” of polytope 

• Works well in practice
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Simplex algorithm

• Local search on the “corners” of polytope 

• Works well in practice 

• Khachiyan’s algorithm [1979] 

• Karmarkar’s algorithm [1984]
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What about combinatorial 
problems?

• All reductions we’ve seen involve “binary” variables 

• “Relaxations” of constraints

Can LPs be useful for solving

combinatorial problems
?
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Vertex cover relaxation

• Recap: HW 3
-

goal
is to select a subset of vertices of

min possible size ,
sit . every

edge is

Variables :

" covered
"

( i. e
,

one of its end pts is selected)

Toreach vertex !
,

have variable Xu
E { 0

,
I }
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edge { uv } ,
Ruth > I
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Original opt formulation :
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then we're in good shape !



“Cheating” solutions



Rounding, approximation



Set cover


