
Advanced Algorithms
Lecture 23: Optimization and linear programming



Announcements

• HW 5 due on Wednesday Nov 20
-



Optimization

Goal: maximize or minimize a function over a “domain”



Recap
Instance of problem

variables x1, x2, … 
constraints 
objective

Optimizer

opt solution: 
x1 = 0, x2 = 1, …

Solution to problem instance

Optimization formulation
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Important aspects

• How to choose variables? (must help us obtain solution to original) 

• Optimizer knows nothing about original problem or instance (only 
knows constraints, variables, …) — requires proof/argument 

• Important to ensure that opt problem can be solved efficiently: 

• how many variables/constraints? 

• discrete/continuous domain 

• type of constraints & objective (linear, quadratic, etc.)
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Examples

• Set Cover 

• Matching — assigning gifts to children 

• Minimum spanning tree
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Recap: efficiency

• Linear programs — real valued variables, linear constraints, linear 
objective 

• “Convex” programs — real valued variables, convex constraints, 
minimize convex objective 

• Good heuristics for “integer linear programs” (esp binary valued), 
“quadratic programming”, …

What optimization problems can be solved efficiently?

Most optimizers are iterative algorithms — constantly improve solution
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What about combinatorial 
problems?

• All reductions we’ve seen involve “binary” variables 

• “Relaxations” of constraints
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Vertex cover relaxation

- Pick a small set of vertices #
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“Cheating” solutions
- optimum solution to the LP need not have

ane all integer values !
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Rounding, approximation

Question: Is the integrality gap potentially

very large ? ( like to ? )

¥Question : Is there a way
to go from a fractional
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Claim : for vertex cover
,

we can convert

any fractional solution
.

{ nu } to a feasible
.
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Rounding
"
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What we obtained :
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Set cover

• What are variables? 

• Constraints? 

• Objective?

Problem:  suppose we have n people, 
and m “desired skills”; each person has a 

subset of the skills. Pick the smallest 
subset of people such that every skill is 

covered
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OPT formulation & LP formulation

nu E { o
,

I } for u Eln ] O E Xu f I

tie !!!
" I

tie 'm
. Ees " "

j

min § Xu '

-

QI .

will the same

"

rounding
"

work ?

a

= {
I if nu > I

;
is { ya } feasible?

0 of wise

No¥ × 't Xz #Xz 31

can happen
but

none of y it



Set cover “polytope”



Set cover — rounding
Randomized rounding Xu
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Let a be a parameter l TBD )
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