Advanced Algorithms

Lecture 23: Optimization and linear programming

Announcements

- HW 5 due on Wednesday Nov 20

Optimization

Goal: maximize or minimize a function over a "domain"

Recap

Instance of problem

$$
x_{1}=0, x_{2}=1, \ldots
$$

Optimizer

Important aspects

- How to choose variables? (must help us obtain solution to original)
- Optimizer knows nothing about original problem or instance (only knows constraints, variables, ...) - requires proof/argument
- Important to ensure that opt problem can be solved efficiently:
- how many variables/constraints?
- discrete/continuous domain
- type of constraints \& objective (linear, quadratic, etc.)

Examples

- Set Cover
- Matching - assigning gifts to children \checkmark
- Minimum spanning tree \rightarrow required \exp many constraints.
- What kind of constraints are allowed?

$$
\text { - prefer "simple" ones }\binom{O P T M I Z E R ' s}{\text { performance }}
$$

Recap: efficiency

What optimization problems can be solved efficiently?

- Linear programs - real valued variables, linear constraints, linear objective
- "Convex" programs - real valued variables, convex constraints, minimize convex objective
- Good heuristics for "integer linear programs" (esp binary valued), "quadratic programming", ...

Most optimizers are iterative algorithms - constantly improve solution

What about combinatorial problems?

- All reductions we've seen involve "binary" variables
- "Relaxations" of constraints

Goal: Can we solve comb. problems Question (e.g. Set cover) using Linear opting
aton
with some guarantees.
Linear programs: continuous opt problems

Qu: Are there issues going from discrete domain \rightarrow Condi nous?

Vertex cover relaxation

- Pick a small set of vertices sit. every edge is "covered".

$$
x_{u} \in\{0,1\} \rightarrow \text { indicates fits' }
$$ chosen.

\forall edges u, v

$$
x_{u}+x_{v} \geqslant 1
$$

Objective: minimize $\sum_{u} x_{u}$. Obj. minimize $\left.\sum_{u} x_{u}\right\}$.
"Cheating" solutions

- optimum solution to the $L P$ need not have Egg.:

* Integrality gap of this instance
re of original
Size of the opt. vertex cover $=2 \equiv$ value of original $\begin{array}{r}\text { formulation. }\end{array}$
Value of $L P$ - relaxation ≤ 1.5 (because $x_{N}=x_{2}=x_{3}=\frac{1}{2}$

$$
\frac{2}{1.5}=\frac{4}{3}
$$

Satisfies all the constraints.).

Rounding, approximation

Question: Is the integrality gap potentially very large? (like 10?)

Question: Is there a way to go from a fractional solution $\left\{x_{n}\right\}$ to an integral one, without changing the objective value "too much"?

Claim: for vertex cover, we can convert any fractional solution $\left\{x_{n}\right\}$ to an feasible integer solution $\left\{y_{u}\right\}$, s. t.

$$
\sum_{u} y_{u} \leq 2 \cdot \sum_{u} x_{u}
$$

Corollary: suppose solving the LP gave a frat. sole obj. val. whose cost $=\underline{\alpha}$; then we can come up with int. solution with cost $\leq 2 \alpha$.
"Rounding": if $x_{n} \lll 0.5$, then set

$$
\begin{array}{lll}
\leq & y_{u}=0 \\
\text { if } x_{u} \lll 0.5_{1} & \text { 1 } & y_{u}=1 .
\end{array}
$$

Feasibility: if $x_{u}+x_{v} \geqslant 1$, then
at least one of x_{u}, x_{u} is $\geqslant \frac{1}{2} \Rightarrow$ at hast
one of $y_{u}, y_{v}=1 \Rightarrow y_{u}+y_{v} \geqslant 1$.
Objective val: for any u, rounding satisfies $y_{u} \leq 2 x_{u}$

$$
\sum_{u} y_{u} \leq 2 \cdot \sum_{u} x_{u} .
$$

What we obtained:
"Relax-\&-Round" paradox for designing approx
Factor - 2 approximation algonthon. algos.

Set cover

- What are variables?
- Constraints?
- Objective?

Problem: suppose we have n people, and m "desired skills"; each person has a subset of the skills. Pick the smallest subset of people such that every skill is covered

Variables: $\quad x_{u} \in\{0,1\}$
Constraints: for each skill j,

$$
\sum_{u \in S_{j}} x_{n} \geqslant 1 \text {, whin } \sum_{n} x_{u} . \quad S_{j} \text { : set of people with skill } j
$$

OPT formulation

$$
x_{u} \in\{0,1\} \text { for } u \in[n]
$$

$$
\forall j \in[m], \quad \sum_{u \in S_{j}} x_{u} \geqslant 1
$$

$\min \sum_{u} x_{u}$.

* LP formulation

$$
\begin{gathered}
0 \leq x_{u} \leq 1 \\
\forall j \in[m], \sum_{u \in S_{j}} x_{u} \geqslant 1
\end{gathered}
$$

$$
\min \sum x_{u}
$$

Qu: will the same "rounding" work?

$$
\begin{aligned}
y_{u}= \begin{cases}1 \text { if } x_{u} \geqslant \frac{1}{2} ; & \text { is }\left\{y_{u}\right\} \text { feasible? } \\
0 \text { o/ wise } & \downarrow \quad x_{1}+x_{2}+x_{3} \geqslant 1 \\
& \text { No! can happen but } \\
\text { none of } y_{i}=1\end{cases}
\end{aligned}
$$

Set cover "polytope"

Set cover - rounding
Randomized rounding

$$
\begin{aligned}
& x_{u}=0.1 \\
& x_{v}=0.6 ; \quad x_{w}=0.8
\end{aligned}
$$

\rightarrow Suppose we round every $x_{n} \rightarrow 1$ w.p. equal to x_{u}.

$$
\underbrace{\frac{1}{100}+\underbrace{\frac{1}{100}+\ldots+\frac{1}{100}}}_{100}
$$

$$
\begin{aligned}
& x_{1}+x_{2}+x_{3} \geqslant 1 \\
& \frac{1}{3} \frac{1}{3} \frac{1}{3}
\end{aligned}
$$

In expectation, one of the three gets rounded up to 1!

Let α be a parameter (TBD), \& suppose we Set $y_{u}=\left\{\begin{array}{lll}1 & w \cdot p . & \alpha x_{u} \rightarrow \\ \min \left(1, \alpha x_{u}\right) . \\ 0 & 0 / \text { wise } . & L e^{-\alpha}\end{array}\right.$

Suppose $x_{1}+x_{2}+\ldots+x_{t} \geqslant 1$
what is the prob. That $y_{1}+\ldots+y_{t}=0$?
$1-a \leq e^{-a}$

$$
\begin{aligned}
& =\left(1-\alpha x_{4}\right)\left(1-\alpha x_{2}\right) \ldots\left(1-\alpha x_{t}\right) \\
& \leq e^{-\alpha x_{1}} \cdot e^{-\alpha x_{2}} \ldots e^{-\alpha x_{t}}=e^{-\alpha\left(\sum_{i=1}^{t} x_{i}\right)}
\end{aligned}
$$

