## Advanced Algorithms

Lecture 27: Reductions, Review

## Basic complexity classes

P: set of all decision problems that can be solved in polynomial time

NP: the set of all decision problems for which there is a polynomial time "verification algorithm"

## Reductions between problems


"I can't find an efficient algorithm, but neither can all these famous people."

Definition. a poly-time reduction from problem A to problem B is a transformation that maps instances of A to instances of B s.t. YES instances map to YES ones and NO instances map to NO ones.


- Truns in polynomial time
- Thas no idea if instance is YES or NO while transforming
- $T$ can be applied to any instance of $A$, obtaining an instance of $B$


## NP-hard and NP-complete

- NP-hard: a problem $A$ is said to be NP-hard if Boolean SAT reduces to $A$ (can replace with Independent Set)
- NP-complete: a problem $A$ is said to be NP-complete if Boolean SAT reduces to $A$ and $A$ reduces to Boolean SAT


## Boolean satisfiability (SAT)

Problem. given a boolean circuit (AND/OR/NOT gates) with inputs $x_{1}, x_{2}, \ldots, x_{n}$ and output $f\left(x_{1}, x_{2}, \ldots, x_{n}\right)$, does there exist a T/F assignment of inputs for which $f$ is TRUE?

Easy to see: SAT is in NP [Witness is the assignment, verification algorithm is the circuit itself!]

## Cook-Levin theorem

Theorem. any problem in NP (i.e., any problem with a poly time verification oracle) has a poly time reduction to Boolean SAT.

## 3-SAT

Problem. given a boolean function $f\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ of the following type: $\quad f\left(x_{1}, x_{2}, \ldots, x_{n}\right)=C_{1} \wedge C_{2} \wedge \ldots \wedge C_{m}$, where each $C_{i}$ has the form $C_{i}=l_{i_{1}} \vee l_{i_{2}} \vee l_{i_{3}}$ for some "literals" (variable or negation), decide if there is an assignment to the $x_{i}$ such that $f$ is TRUE

Is a special case of SAT, so "easier" than SAT

Turns out that SAT $\leq_{p}$ 3-SAT as well

## Independent Set (IS)

Problem. given a graph $G=(V, E)$ and parameter $k$, find if there is an independent set of size $k$

IS $\in$ NP (because there's a verification procedure)

## $3-$ SAT $\leq_{p}$ IndependentSet

## $3-$ SAT $\leq_{p}$ IndependentSet

## Independent Set (IS)

Problem. given a graph $G=(V, E)$ and parameter $k$, find if there is
an independent set of size $k$

IS $\in$ NP (because there's a verification procedure)

3-SAT reduces to IS => SAT reduces to IS => IS is NP-hard

## Hardness of approximation

- Can problems be NP-hard to solve approximately? (e.g., set cover)
- What kind of reduction?


## Hardness of approximation


"Standard" NP hardness

## Hardness of approximation

- "PCP theorem": there is a "gap-inducing" reduction from SAT to 3SAT
- Used to show hardness of approximating various other problems


## Course review

