
Lecture 18: Sampling and estimation  

Plan/outline  

Today's topic is sampling, which is one of the classic examples of a randomized algorithm. We'll develop 

methods to reason about sampling, obtaining error and "confidence" bounds.

Estimating the average  

Suppose we have an array  of numbers in the interval , and the goal is to find the 

average .  For convenience, let us denote the average as .

This can easily be done in time  by going over the array. But what if we just want to have a good 

estimate of ? Suppose we are OK with an error of , for some parameter .  Can we do this without going 

over the array?

The natural idea is to sample a few elements of the array and take the empirical average; this raises the 

questions:

how many samples do we need to take?

what is the confidence we have in our estimate?

does the correctness depend on the entries in the array?

Today we'll formally study these questions.

Sampling basics  

First off, let us formalize what we mean by sampling. The natural first suggestion is to take  of the  array 

elements at random. The issue with analyzing this is that the different samples are not independent -- for 

instance, the second element sampled is necessarily a different array element. We remedy this by sampling 

with replacement. Thus when we talk of taking  samples, we simply mean picking indices  

independently and uniformly at random in  (with replacement), and considering 

.  The estimate we produce is now simply .

We can now analyze the procedure by defining the random variables , where  and  is the 

value of the th sample, i.e., .

Thus by definition, the variables  are all independent and identically distributed (the standard 

abbreviation here is IID). We also have that for every ,  

The first equality is by the definition of the expectation and the second one uses the fact that  is a 

uniform sample.

The empirical average  thus also has expectation equal to . (By the linearity of expectation.)

Our goal is to understand: how close is  to ? And with what probability does it deviate?

Try 1: Markov.  Markov's inequality, as we saw, gives a first cut at reasoning about how much a random 

variable deviates from its expected value. If we were to be able to apply it, we get that for all , 
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But note that  is not a non-negative random variable! So we cannot apply Markov's inequality here! But 

suppose for instance that all the  are in  instead of  (which we can do by shifting by  and 

dividing by  for example). Even so, this bound is rather weak: to see this, suppose . Then the 

bound we get on  is only roughly .  The other significant problem is that the bound is 

independent of the number of samples. Intuitively, we expect that as we take more samples for averaging, we 

should get a better guarantee.

Variance  

It turns out that a much better way to analyze this situation is using the variance.  Formally, the variance 

of a random variable  is defined as .  In general, this simplifies to ; the 

variance is usually denoted as var .

The variance captures the notion of how much we expect a random variable to deviate from the expected 

value. The square root of the variance is called the standard deviation, for this reason.

For example, if we have an unbiased coin toss, with outcomes 0 and 1 with probability  each, the 

expected value is , but in either outcome, the value is  away from the expectation, and the variance is 

.

Let us now see how to compute the variance of the random variable .

Computing the variance.  we have already seen that  is .  Thus by the definition of variance, we 

have

var .

For convenience, let us write . Since the  are independent, so are the . The nice thing is 

that  for all , and by independence, we have  for all  (because the expectation of 

the product of independent variables is the product of the expectations). 

Thus by expanding out the square and using the above, we have 

var .

In the last step, we used the linearity of expectation. Now, since  by assumption the mean  is 

also in this range, thus  is always in the interval .  This implies that . Plugging this in, 

because there are  terms, we get var .

This implies that the standard deviation is at most . In other words, the estimate  deviates by 

"roughly" . This is nice because as the sample size  grows, the error in the estimate drops.

Chebychev's inequality  

We can ask if the bound we have on the estimate holds "most of the time". Such a result can be obtained via 

what is known as Chebychev's inequality.

Theorem. (Chebychev's inequality) Let  be a random variable whose variance is . Then for any 

, we have 

Proof. The proof follows directly by applying Markov's inequality to the random variable . 

In this case  is a non-negative random variable, and its expectation is  by definition. Now, having 

 is equivalent to having , and thus Markov's inequality implies the theorem.
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Let us now plug in  in our bound earlier on the variance (which gave ). We get: 

.  (**)

This is a considerably better bound than the one obtained by Markov's inequality! Note that since the proof 

Chebychev's inequality was only a simple application of Markov, what we really did was moving to the 

variable ; this turns out to be a common trick: applying Markov to "higher moments" leads to much 

stronger bounds. The catch is that computing the higher moments is often messy -- the variance is one of 

the easy cases.

Samples vs accuracy.  The bound (**) above tells us that if the number of samples , then we 

get an accuracy of 0.01 in the estimate, with probability at least .

Interestingly, the same number of samples can end up with a worse bound for the error but higher 

confidence. For example, setting  and using Chebychev's inequality, we get 

Thus, with , we have that we get an accuracy of  with probability at least . 

This tradeoff between the error bound and confidence is quite common in sampling and in many 

randomized algorithms.

Is this bound tight? we can ask if doing a more sophisticated analysis can lead to better bounds. This is 

true for the confidence probabilities that we obtained. Indeed, Chernoff bounds typically give the right 

bounds for such problems. 

However, for say a confidence of , the simple analysis above is fairly tight. By taking  samples, we 

typically do expect an error roughly  (this is why the quantity is called the standard deviation). You 

will also see this in your homework problems via experiments.
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