Advanced Algorithms

Lecture 25: Limits on efficient computation

Lower bounds on computation

- Can we search for an element *x* in a sorted, *n*-element array in time < log *n*?
- Can we solve the shortest path problem in time O(m+n) on all graphs?
- Can we multiply two $n \times n$ matrices in time O(n²)?
- Can we factor an *n* digit number in poly(*n*) time?

Challenge in lower bounds: must reason about an algorithm without knowing what it is!

The model matters!

Problem. can we search for an element x in a sorted, n-element array in time $< \log n$?

- What operations are "allowed"? [if only comparisons, then there's a lower bound of log n]
- What about randomness? [makes things tricky]

Last class

- In limited models, can show "unconditional" lower bounds
- **Key question:** is there a model that captures "all computations"
- Turing machine / RAM model [Church-Turing thesis]
- Move to decision problems (YES/NO answers)

Lower bounds for TMs <u>hard to prove!</u>

Lower bounds

"I can't find an efficient algorithm, I guess I'm just too dumb."

"I can't find an efficient algorithm, because no such algorithm is possible!"

Conditional lower bounds

Idea behind "reductions".

"I can't find an efficient algorithm, but neither can all these famous people."

Complexity classes

Group problems into "classes" — equally difficult/easy

The class P

Definition. set of all decision problems that can be solved in polynomial time (on a Turing machine)

- Does graph have a path of length $\leq L$ between u and v?
- Does graph have a spanning tree of total cost <= *C*?

All problems solvable in polytime on a mon-det.

The class NP

Non-deterministic polynomial time

Definition. the set of all decision problems for which there is a polynomial time "verification algorithm"

• Recall (independent set). does a graph have an independent varification set (set of vertices with no edges) of size k?

for any YES instance of problem,

I there is a "witness" that can convince someone

that the answer is YES.

- Given a No instance, there is no way to convince . -that answer is YES.

witness: simply the independent set S.

Verification alg: - check that ISI >k. there are no edges between Check that H

vertices of S.

O(n2) time algorithm. L, y both conditions are met, return YES

Witnesses and NP

S: witness or certificate.

. verification algorithm.

Problems in NP

TIVI.

no med to look at certificate

no We don't know for sure I PIN Ventier: • Most "puzzles" ~> ~~ Solution S

, to puzzle

Traveling salesman problem

 Boolean "satisfiability" G, dists, target tength of tour

Witness: order in which to tiniv vertices -

Ventier: Verify that every vertex in exactly G shows up , on le & total len < L. in but size = 5 = 1.09 Nobyinomial in # bits used to write N.

Primality testing: given N, return YES if # is prime & moy # is composite. 75431421

certificate? [\le \int \n. \le \siz \lambda \lambda \le \siz \lambda \lambda \le \siz \lam Verification algo?

-> Pratt 60s:

Other complexity classes

mxn chess.
games:

- PSPACE polynomial "space"
- BPP randomized algorithms (

• #P — counting class

RP: Lop-sided

RP: www.ion.

YES/NO problems for which there is a prob. polynomial time ALG that returns time ALG that returns right answer with 90% prob.).

Complexity "classes"

Reductions

Informal vs formal...

Informal: suppose we have problems A, B. Then we

Say that A reduces to B

"I can't find an efficient algorithm, but neither can all these famous people."

Formal defn: [Polynomial time reduction]. Let A&B be two decision problems. Then we say that $A \leq_{p} B$ if there exists a poly time procedure T that transforms any instance I of A m instance nof B, such that

- y I is a YES inst. for A, T(I) is a YES for B

- " No " " No "

NP-hard and NP-complete

Boolean satisfiability

Cook-Levin theorem