Advanced Algorithms

Lecture 25: Limits on efficient computation

Lower bounds on computation

- Can we search for an element x in a sorted, n-element array in time $<\log n$?
- Can we solve the shortest path problem in time $\mathrm{O}(m+n)$ on all graphs?
- Can we multiply two $n \times n$ matrices in time $\mathrm{O}\left(\mathrm{n}^{2}\right)$?
- Can we factor an n digit number in $\operatorname{poly}(n)$ time?

Challenge in lower bounds: must reason about an algorithm without knowing what it is!

The model matters!

Problem. can we search for an element x in a sorted, n-element array in time $<\log n$?

- What operations are "allowed"? [if only comparisons, then there's a lower bound of $\log n$]
- What about randomness? [makes things tricky]
Yo's minimax principle

Last class

- In limited models, can show "unconditional" lower bounds
- Key question: is there a model that captures "all computations"
- Turing machine / RAM model - [Church-Turing thesis]
- Move to decision problems (YES/NO answers)
- Fairly general way of moving to decision versions
- Lower bounds for TM hard to prove! (Ind Set)

Lower bounds

"I can't find an efficient algorithm, I guess l'm just too dumb."

"I can't find an efficient algorithm, because no such algorithm is possible!"

Conditional lower bounds

Idea behind "reduction".

"I can't find an efficient algorithm, but neither can all these famous people."

Complexity classes

Group problems into "classes" - equally difficult/easy

The class P

Definition. set of all decision problems that can be solved in polynomial time (on a Turing machine)

$$
\left.\begin{array}{c}
{[\text { definition of the class }} \\
\text { does not allow } \\
\text { randomness }
\end{array}\right]
$$

- Does graph have a path of length $<=L$ between u and v ?
- Does graph have a spanning tree of total cost $<=C$?

All problems solvable in poly time on a non-det. The class NP $J^{\text {Tuning machine }}$.

Non-deterministic polynomial time

Definition. the set of all decision problems for which there is a polynomial time "verification algorithm"

- Recall (independent set). does a graph have an independent set (set of vertices with no edges) of size k ?

For any YES instance of problem,
$\sqrt{ }$ - There is a "witness" that can convince that the answer is YES.

- Given a No instance, there is no way to Convince... that answer is YES.

Witness: simply the independent set S.

Verification alg: - check that $|s|>k$.
(-check that there are no edges between vertices of S.
$O\left(n^{2}\right)$ time algorithm.
L if both conditions are met, rectum YES else return NO.

Verification Procedure
Prover
 generate S.

$\underset{\rightarrow}{ }$ If (G, k) is a $y \in S$ instance then $\exists S$ that prover can use 1 - check if $S \subseteq V,|S| \geq k$

- checks that there are no edges. to make verifier output YES.
\& If (G, k) is actually a No instance, there is no choice of S that can make verifier output BYES.

Witnesses and NP
S : witness or certificate.

verification algorithms.

Problems in NP
We don't know for sure

- All problems in P
no med to look at certifica if $P \neq N P$.
- Most "puzzles"
witness:
Verifier:
SolutionS
to puzzle a procedure that cheder validity of S.
- Traveling salesman problem

Witness:
Verifier:
order in which to

Verify that visit vertices. every vertex in G shows up fancily \& total len $\leq L$.
in put sing $=s=$ egg N polynomial in \# bits used to
Primality testing: given N, retum yes if \# is prime \& mo if \# is composite.

$$
75431421
$$

Verification alpo?
\rightarrow Pratt '60s:

Other complexity classes $n \times n$ chess.
games:

- PSPACE - polynomial "space"
- BPP - randomized algorithms (YES/NO probleens for which there is a prob. polynomial time AlG that returns
- \# P - counting class

RP: lop-sided right answer with 90° lo prob. version.

Complexity "classes"

Reductions

Informal vs formal...

Informal: suppose we have problems A, B. Then we

"I can't find an efficient algorithm, but neither can all these famous people."
say that A reduces to B if given an algorithm for B, we can find an alg. for $A \delta \delta$ "roughly same" complexity.

Formal defn: [Polynomial time reduction].
Let $A \& B$ be two decision problems. Then we say that $A \leq p B$ if these exists a poly time procedure T that transforms any instance I of $A \leadsto$ inst once \sim of B, such that

- if I is a YEs inst. for $A, T(I)$ is a YES for $\begin{array}{r}B\end{array}$ - い No

- operates in polynomial time
* T does not know y I is a YEs or a No instance

NP-hard and NP-complete

Boolean satisfiability

Cook-Levin theorem

