
Advanced Algorithms
Lecture 25: Limits on efficient computation



Lower bounds on computation

• Can we search for an element x in a sorted, n-element array in time 
< log n? 

• Can we solve the shortest path problem in time O(m+n) on all 
graphs? 

• Can we multiply two n x n matrices in time O(n2)? 

• Can we factor an n digit number in poly(n) time?

Challenge in lower bounds:  must reason about an algorithm without 
knowing what it is! 
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The model matters!
Problem.  can we search for an element x in a sorted, n-element 
array in time < log n?

• What operations are “allowed”?  [if only comparisons, then there’s 
a lower bound of log n] 

• What about randomness? [makes things tricky] 
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Yao 's minimax principle .



Last class

• In limited models, can show “unconditional” lower bounds 

• Key question:  is there a model that captures “all computations” 

• Turing machine / RAM model — [Church-Turing thesis] 

• Move to decision problems (YES/NO answers) 

• Lower bounds for TMs hard to prove!
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- Fairly general way of moving to decision versions .
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Conditional lower bounds
Idea behind

" reductions
"
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Complexity classes

Group problems into “classes” — equally difficult/easy



The class P
Definition.  set of all decision problems that can be solved in 

polynomial time

• Does graph have a path of length <= L between u and v? 

• Does graph have a spanning tree of total cost <= C?
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The class NP

Definition.  the set of all decision problems for which there is a 
polynomial time “verification algorithm” 

Non-deterministic polynomial time

• Recall (independent set).  does a graph have an independent 
set (set of vertices with no edges) of size k?
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Witnesses and NP

S : w'aIe .

If : verification algorithm .



Problems in NP

• All problems in P 

• Most “puzzles” 

• Traveling salesman problem 

• Boolean “satisfiability”
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input size -
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Other complexity classes

• PSPACE — polynomial “space”  

• BPP — randomized algorithms 

• #P — counting class
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Complexity “classes”



Reductions
Informal vs formal…
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Formal defer : ( Polynomial time reduction ) .

#let A & B be two decision problems . Then
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NP-hard and NP-complete



Boolean satisfiability



Cook-Levin theorem


