Advanced Algorithms

Lecture 24: Complexity: limits on efficient computation
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Optimization tormulations

Continuous approaches for discrete problems

¢ Can sometimes lead to polynomial time algorithms (weighted
matching)

e Often used to obtain “approximation algorithms”

e Integrality gap
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L ower bounds

Can we search for an element x in a sorted, n-element array in time
< log n?

Can we solve the shortest path problem in time O(m+n) on all
graphs?

Can we multiply two n x n matrices in time O(n2)?

Can we factor an n digit number in poly(n) time?



L ower bounds

Can we search for an element x in a sorted, n-element array in time
< log n?

Can we solve the shortest path problem in time O(m+n) on all
graphs?

Can we multiply two n x n matrices in time O(n2)?

Can we factor an n digit number in poly(n) time?

Challenge in lower bounds: must reason about an algorithm without
- knowing what it is!




Computational model

Problem. can we search for an element x in a sorted, n-element

array in time < log 1Iz?
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A formal lower bound

Problem. can we search for an element x in a sorted, n-element
array in time < log n?

¢ What operations are “allowed”? e
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e What about randomness? s AT
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Theorem. consider any deterministi(%rggrithm for “search”

problem that can only access array via comparisons. Then algorithm
must take at least log. n steps (comparisons).
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A formal lower bound
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L ower bounds
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e Lower bounds for “limited” models very useful in algorithm design

e Key question: is there a model that captures “all computations”
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Universal models
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¢ Turing machine
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Church-Turing “thesis”. any reasonable physical model of

computation can be simulated “efficiently” (polynomial slowdown)
on a Turing machine



Universal models

¢ Turing machine

e Equiv., RAM model

Church-Turing “thesis”. any reasonable physical model of
computation can be simulated “efficiently” (polynomial slowdown)
on a Turing machine

Assuming it’s true, need to only show lower bounds on a Turing machine
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Reasoning about problems
[Cowa # be J’“C’J””“LA W%MW%9

(oam e St i Lnd- seb

e “Simplification”: move to decision version %\w\ \’% K .
4K e Does graph have an independent set of size k? 5 ‘9 voblernns
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e Does graph have a path of length <= L between u and v?
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Decision vs optimization

Theorem. suppose we can solve the decision version of the
independent set problem in poly time, we can actually solve max-IS in
poly time
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Decision vs optimization
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Complexity

Question. does the decision version of IS have a polynomial time
algorithm?



Complexity “classes”

recognizable

decidable

EXPSPACE

EXPTIME
PSPACE=NPSPACE
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The class P



The class NP

Question. does the graph G have an independent set of size k?



The class NP

Most “puzzles” belong to NP



Boolean satistiability

“Captures” the essence of NP



