
Lecture 17: Balls & bins (contd.)  

Plan/outline  

Last class, we started looking at hashing, using a simple abstraction of throwing balls into bins. We tried to ask
various questions about the distribution of the bin sizes. This time we'll continue this line of reasoning. Some
important tools like the linearity of expectation (which we also saw last time) and the union bound will feature
in the analysis.

Throwing  balls into  bins at random  

Recall the setting from last class: we have  balls that are thrown randomly and independently into  bins. We
would like to understand di!erent properties about how "evenly" the balls are distributed. We asked:

What is the expected size (number of balls) of each bin?
Suppose . Then what is the expected number of bins with say precisely  balls?
Again assuming , what is the probability that some bin gets  balls?

Using the linearity of expectation, we saw that the expected size of each bin is precisely , as one can expect.
We also saw that the answer to the second question (for  large enough) is roughly . The main trick in the
analyses of both these statements was to de"ne the appropriate random variables, express them as a sum of
"simpler", binary random variables, and work with their expectated values (which is easier to compute).

Let us now answer the "nal question above. If we "x a particular bin and ask what's the probability that it gets 
 balls, it's the computation we did last time. For any , the probability that bin  receives  balls is exactly: 

Like last time, let us use , and a well known consequence of what is known as Stirling's
approximation.

Approximation for . Stirling's approximation is an asymptotic formula for . Using this, one can obtain a
commonly used approximation for the binomial coe#cient. Speci"cally, we get: 

Plugging both of these into the expression above, we have: Pr[ bin  receives  balls ] .

Using the fact that when ,  (and de"nitely less than ), we obtain an upper bound of 
.

We can then plug in  to get an upper bound on the probability that bin  receives  balls (and this is
true for any ). Now, how do we argue about the probability that some ball receives  balls? A general (and
very simple) fact that helps us show such bounds is the so-called union bound.



Theorem. (Union bound) Let  be events in a probability space. Then we have 
.

In the above, for two events  and ,  is the "OR" of the two events, or the "union" of the two events, i.e.,
it occurs if either  or  occurs (or both).

The union bound is shown easily for the case of two events, and the version above follows by induction.

Also, equality in the union bound holds if and only if the events  are all disjoint. In fact, the union bound is a
special case of another well-known formula, known as the inclusion/exclusion formula. For more on these,
here's a good and short note. (Pay close attention to Corollary 3 in the note). For a longer note with other
connections, see this.

Going back to our example, we obtained a bound on a speci"c bin  receving  balls. Let us call this event .
Then by de"nition, the probability that some ball receives  balls is precisely  (as we
have  bins). Thus by the union bound, the probability is at most  times the probability computed earlier,
which is .

Plugging in  and writing , the above simpli"es to , which is tiny when  is large
enough.

In fact, as an algebra exercise, one can verify that  starts becoming  as we choose 
, for a constant .

A second proof

Another proof suggested in class is the following; suppose we show that the probability of bin  receiving  balls
is , as above. Now, what is the expected number of bins that receive  balls? (similar to what we studied
last time with )

Let  denote the random variable which is the number of bins receiving  balls. The nice thing is that the
probability that there exists a bin with  balls is equivalent to the probability that . Now, expressing  as a
sum of  binary variables like last time, and by the linearity of expectation, . Now, we can use
Markov's inequality. Note that we can re-state it as .

Plugging in , we get .

This is precisely the same bound as above, but without using the Union bound. (In simple settings such as this,
it's often possible to obtain multiple proofs, and you should try coming up with new ones!)

Conclusions -- balls and bins  

Let us summarize what we learned about the balls and bins process, speci"cally in the case of  (so we are
throwing  balls into  bins uniformly at random).

The expected size (#balls) in each bin is precisely .

https://people.maths.bris.ac.uk/~mb13434/incl_excl_n.pdf
https://www.cs.purdue.edu/homes/spa/papers/chap3.ps


That said, not all bins have size exactly , there is a distribution. Furthermore, the sizes of the bins are
correlated (to be precise, anti-correlated, i.e., if one bin happens to get a lot of balls, the others will likely get
fewer balls, because the total number is "xed).

The number of bins of size  is at most , as we saw. [This is a "fairly tight" upper bound; we had a more
precise bound earlier.] For , the expected number of bins of size  is . What one should note is that
a constant fraction of the bins receive  balls, for any constant .

We also computed the probability that there exists a bin of size  and found it to be very small. In fact, for
balls and bins with , it turns out that the maximum bin size is, with high probability, . This
bound is also tight; with high probability, there exists a bin that gets roughly  balls.

Consequences for hashing. We noted earlier that the balls and bins process is an idealized way to study
hashing. Assuming that a hash function is perfectly random, its behavior would correspond to that of balls and
bins.

The bound above for the "max size" implies that if we were to use hashing in order to do element lookup (more
precisely, suppose we're using a hash map to store a set of values, and that we perform linear probing to do
lookup), then the max lookup time can be as large as . Another scenario where this problem
surfaces is the following: suppose we have  servers that can process queries, and suppose we have (roughly) 
queries arriving one by one. Each time a query arrives, suppose we assign it to a random server. Then the above
analysis shows that some server receives  queries, and it turns out that a constant fraction of
servers don't receive any queries! So random assignment is much more "lopsided" than say round-robin.
[Round-robin has other problems in many applications: suppose a new server joins the "server pool" half way
into the process. Then round-robin requires e!ort to "adapt", while the random process can go on unchanged.]

In the query assignment situation above, consider the following simple modi"cation: instead of assigning a
query to a random server, say we "nd two random servers,  and , and we assign the query to the server
with the smaller load (of the two). Then it turns out that the max load is only  --- considerably
smaller than the earlier bound.

This trick can also be used in hash tables. We have two hash functions  and , and when inserting an
element , we look at the bins  and  and insert  into into the smaller bin. During lookup, we simply
go through both the bins to check for . We now obtain a query time that is  (because we potentially
go through two bins) in the worst case.

This phenomenon is often known as the power of two choices, discovered in around 1992. Proving the 
 bound turns out to be rather tricky. There are many writeups that give a proof. Two that I liked are

here and here.

Next class, we will study sampling, one of the other most common applications of probabilistic algorithms.

https://www.cs.cmu.edu/afs/cs/academic/class/15859-f04/www/scribes/lec10.pdf
https://people.eecs.berkeley.edu/~satishr/cs273.01/notes-two-choices.ps
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