
Advanced Algorithms
Lecture 20: Optimization



Announcements

• HW 5 — will be out today, due Wednesday Nov 20 

• Next Tuesday (Nov 12): Guest lecture by Suresh Venkat on 
Algorithmic Fairness
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Optimization formulations



Optimization?

Typical goal: maximize or minimize a function over a “domain”



Optimization — formal

• Variables 

• Objective function (needs to be optimized) 

• Constraints that define domain
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Typical issues

• Can optimum be found efficiently? 

• Local vs global optima 

• Algorithms for optimization (first/second order methods, descent 
techniques, …)

Topics of another course… we will use opt as a blackbox 

( can we maximize / min - . )
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Classic examples

• Unconstrained optimization — regression
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Classic examples

• Linear optimization (or linear programming)
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Discrete problems as OPT

• Matching in bipartite graphs      [blast from the past — children, gifts, …] 

• Set cover   [choose smallest set of people to “cover” all skills 

• Minimum spanning tree 

• Shortest path?
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Matching problem
Problem:  suppose we have n children and n gifts. Each child has some 
“happiness value” (Vij) for each gift. Find an allocation (one gift per child) 

so that total happiness is maximized.

Bipartite .
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Bipartite matching as opt

• What are variables? 

• Constraints? 

• Objective?
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Optimization
0ptproblem_
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Set cover

• What are variables? 

• Constraints? 

• Objective?

Problem:  suppose we have n people, 
and m “desired skills”; each person has a 

subset of the skills. Pick the smallest 
subset of people such that every skill is 

covered

n

'

, .
.

.

-

-

n
M .

x. j
: foll .

←

,

*



Set cover as opt

• What are variables? 

• Constraints? 

• Objective?
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Spanning tree

Problem:  let G = (V, E) be a (simple, undirected) graph with edge 
weights {we} (>0). Pick a subset of the edges, such that (a) all vertices 

are “connected”, (b) total weight of edges is minimized

• What are variables? 

• Constraints? 

• Objective?
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Constraints for MST
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Why express as opt?

• Many algorithms, heuristics 

• Often “hard” to guarantee good solution 

• Relaxations can still be useful


