Advanced Algorithms

Lecture 19: Sampling (contd.), Optimization

Announcements

- WW 4 due tomorrow!

Problem 4

w
minimize

$$
\begin{array}{r}
\max \{d(a, w), \\
d(b, w)
\end{array}
$$

Problem: let A be an array with n elements, each in interval [0,1$]$. Find the average of all elements.

- Algorithm: take k samples and return sample mean
- Chebychev's inequality: prob [error $>\mathrm{t} / \backslash \mathrm{sqrt} \mathrm{k}]<=1 / \mathrm{t}^{2}$ $\frac{t}{\sqrt{k}} \quad \begin{array}{ll}\text { for any }\end{array}$
- Exercise: test that the error in estimation truly around $1 / \backslash$ sqrt k
- Central limit theorem
(with decent confidence)

Moral: getting error $\underset{=}{z / r e q u i r e s ~ r o u g h l y ~} 1 / z^{\mathbf{2}}$ samples

$$
(0.01)
$$

Applications of sampling

Problem: predicting an election; say everyone votes R or B and majority wins
"Reduction" to avg-finding
Associate $R:-1 ; \quad B:+1$ $\begin{array}{lllllll} & p_{1} & p_{2} & \ldots & & p_{N} \\ \rightarrow & 1 & -1 & 1 & 1 & -1 & \cdots\end{array}$
R is majority \Leftrightarrow avg. value <0

B

$$
\begin{aligned}
& \text { average } \\
& \text { the elements }
\end{aligned}=\frac{\# B-\# R}{N}=\frac{\sum_{i=1}^{N} p_{i}}{N}
$$ of the elements.

Result from. last lecture:
$\left\{\right.$ To get result with confidence $\frac{3}{4}$, \&
error ε, we need $\sim \frac{4}{\varepsilon^{2}}$ samples.

when is this good enough?
$(\varepsilon=0.01)$. \longrightarrow only if the
"true" average $\frac{\# B-\# R}{N}$ is NOT $\dot{m}(-\varepsilon, \varepsilon)$

Trade-offs

- Number of samples (k)
- Error in result (+/- "true average")
- Confidence in result (error bound holds w.p. ...)
- How close is the margin in the true population?

Streaming algorithms

Suppose we have data arriving one-element-at-a-time, and our goal is to find number of "distinct elements"

- Suppose destinations range from $1, \ldots, 2^{32}$
- We are OK with multiplicative error (factor 2, say)

$$
\begin{aligned}
& \begin{array}{l}
\text { true ans: } \\
\begin{array}{l}
\left(\frac{m}{2}, 2 \mathrm{~m}\right)
\end{array} \\
\text { amount of memory need } \\
\\
\\
\approx \# \text { distinct destinations. }
\end{array}
\end{aligned}
$$

Streaming algorithms

$$
{\underset{d=1}{2}}_{\substack{d=4}}^{\substack{d=1}} p_{d=3}
$$

- Hash function "h" from $\left\{1, \ldots, 2^{3}\right\}$ to (os)
- Algorithm:
- whenever ip arrives:
compute $h\left(b_{i}\right)$
- denote by x the
smallest value of $h\left(p_{i}\right)$ sofar.
in the end,
in the end,
- return $/ x$

Qu: Suppose we have k random real $\# s$ in the interal $(0,1)$. What do you expect the smallest $\#$ to be?
Obs: $h(j)$ is basically a random real $\#$ in the interval $(0,1) \quad p_{1}, p_{2}, \ldots, p_{N} \rightarrow m$ distinct ones.

$$
h\left(p_{1}\right), h\left(p_{2}\right), \ldots, h\left(p_{N}\right) \rightarrow \underset{i m}{m}(0,1) .
$$ x in the alg $\approx \frac{1}{m}$.

Expected value

- Output $\frac{1}{x}, \mathbb{E}[x]=\frac{1}{m} \rightarrow$ true answer.

$$
\mathbb{E}\left[\frac{1}{x}\right]=m
$$

$$
\operatorname{Pv}\left[\min <\frac{1}{10 k^{3}}\right] ? \approx \frac{1}{10}
$$

Boosting probability

- Keep track of r hash functions.

r/10 of them will be \approx 10 m

Median of these answers is a very good estimate

"Power of randomness"

- Randomness often helps under "resource constraints"
- Sub-linear algorithms (not looking at or being able to store full input) - still obtain good estimates
- Big caveat: not clear how to generate random numbers! can often take a lot of time
- Complexity question: don't know if randomness helps solve problems "significantly faster"

$$
P=R P
$$

Optimization formulations

Optimization?

- Variables in a domain
- Objective
- Constraints

Classic examples

- Linear programming
- Convex optimization

Optimization for "discrete" problems

- Variables in a domain
- Objective
- Constraints

Phrasing problems as opt

- Matching?
- Shortest path

Motivations, plan

- Why useful?
- Complexity issues

