
Advanced Algorithms
Lecture 19: Sampling (contd.), Optimization

-

Announcements

• HW 4 due tomorrow!

Problem 4
w

-
o minimize

✓ max { d la
, 4 ,

°
bdfb ,

w)
a b

Sampling

• Algorithm: take k samples and return sample mean

• Chebychev’s inequality: prob [error > t/\sqrt k] <= 1/t2

• Exercise: test that the error in estimation truly around 1/\sqrt k

• Central limit theorem

Problem: let A be an array with n elements, each in interval [0,1]. Find
the average of all elements.

Moral: getting error z requires roughly 1/z2 samples

X ;
:

Value of the

" Confidence
interval

:
'

i' th sampled
element .

(
=

.

÷ ::

(with decent confidence)

=

a

d
(o .

01) 104

Applications of sampling

Problem: predicting an election; say everyone votes R or B and
majority wins

“Reduction” to avg-finding
-

Associate
R : - ti B : t '

Is
in

'

t
, th . - -

- ← on

ii::÷÷
.

.
70 .

B i

n

average=

##= ¥1
N

of the elements
in array .

Resu÷me :

{
,

To get result with confidence 42 ,&

error E
,

we need r tf samples .

{
when is this good enough ?

(E -
-

o . ol) .

4 only if the

"

true
"

average
#Bj#ER

is NOT in f- E ,
E)

Trade-offs

• Number of samples (k)

• Error in result (+/- “true average”)

• Confidence in result (error bound holds w.p. …)

• How close is the margin in the true population?

1i372

=

Streaming algorithms
Suppose we have data arriving one-element-at-a-time, and our goal is

to find number of “distinct elements”

d=1 d=4 d=1 d=3

• Suppose destinations range from 1, …, 232

• We are OK with multiplicative error (factor 2, say)

PN .
.

- K H

r . -
- - . ÷

-

store all

true

antis
destinations

in

(I ,
2 m) a

hash table .

- amount if memory
needed

= # distinct destinations .

Streaming algorithms
d=1 d=4 d=1 d=3

• Hash function “h” from 1, …, 232 to (0,1)

• Algorithm:

Ku -
- .

- k k

.

I 3
=

-

whenever it ;
arrives :

h :{ I
,

2
,

. - - ,
2

" } → (o
,

,)

compute hllbi) 5¥ I
1- Imini

. .

random x in (o
,

I) .

QI . Suppose we have k random real # s in

4k .

the interval I o
,

I) .

¥Xx !
p

-

what do you expect the smallest# to be ?

Ob h (j) is basically a random real # in the

K
,

13
,

. . .

,

Pn →
m

distinct

interval (0
,

t) ones .

htt ,) ,
4131 , .

. . . ,
hlpn) → m

random # s

in (o
,

I) .

X in the alg = Im .

Expected value

- Output I . EH = tm
→ true answer .

Prf m "
a

,

?

= to '

Boosting probability

-
keep track of r hash functions .

I → info of them

I Eli.

.

a " e

:

+ t
Yx

,

'
4

,

"
xrMedian

of these answers is a

veiygoodestimate

“Power of randomness”

• Randomness often helps under “resource constraints”

• Sub-linear algorithms (not looking at or being able to store full
input) — still obtain good estimates

• Big caveat: not clear how to generate random numbers! can often
take a lot of time

• Complexity question: don’t know if randomness helps solve
problems “significantly faster”

iii.i' iii. .

.

=P
I EP

Optimization formulations

Optimization?

• Variables in a domain

• Objective

• Constraints

Classic examples

• Linear programming

• Convex optimization

Optimization for “discrete”
problems

• Variables in a domain

• Objective

• Constraints

Phrasing problems as opt

• Matching?

• Shortest path

Motivations, plan

• Why useful?

• Complexity issues

