
Advanced Algorithms
Lecture 19: Sampling (contd.), Optimization
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Announcements

• HW 4 due tomorrow!
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Sampling

• Algorithm: take k samples and return sample mean 

• Chebychev’s inequality: prob [ error > t/\sqrt k ] <= 1/t2 

• Exercise: test that the error in estimation truly around 1/\sqrt k 

• Central limit theorem

Problem:  let A be an array with n elements, each in interval [0,1]. Find 
the average of all elements.

Moral:  getting error z requires roughly 1/z2 samples
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Applications of sampling

Problem:  predicting an election; say everyone votes R or B and 
majority wins



“Reduction” to avg-finding
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Trade-offs

• Number of samples (k) 

• Error in result (+/- “true average”) 

• Confidence in result (error bound holds w.p. …) 

• How close is the margin in the true population?
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Streaming algorithms
Suppose we have data arriving one-element-at-a-time, and our goal is 

to find number of “distinct elements”

d=1 d=4 d=1 d=3

• Suppose destinations range from 1, …, 232 

• We are OK with multiplicative error (factor 2, say)
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Streaming algorithms
d=1 d=4 d=1 d=3

• Hash function “h” from 1, …, 232 to (0,1) 

• Algorithm:
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QI . Suppose we have k random real # s in
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Expected value
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Boosting probability
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“Power of randomness”

• Randomness often helps under “resource constraints” 

• Sub-linear algorithms (not looking at or being able to store full 
input) — still obtain good estimates 

• Big caveat:  not clear how to generate random numbers! can often 
take a lot of time 

• Complexity question: don’t know if randomness helps solve 
problems “significantly faster”
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Optimization formulations



Optimization?

• Variables in a domain 

• Objective 

• Constraints



Classic examples

• Linear programming 
 

• Convex optimization



Optimization for “discrete” 
problems

• Variables in a domain 

• Objective 

• Constraints



Phrasing problems as opt

• Matching? 

• Shortest path



Motivations, plan

• Why useful? 

• Complexity issues


