
Lecture 15: Expected running time  

Plan/outline  

Last class, we saw algorithms that used randomization in order to achieve interesting speed-ups. Today, we
consider algorithms in which the running time is a random variable, and study the notion of the "expected"
running time.

Las Vegas algorithms  

Most of the algorithms we saw in the last class had the following behavior: they run in time , where
 is the input size and  is some parameter, and they have a failure probability (i.e., probability of returning an

incorrect answer ) of . These algorithms are often called Monte Carlo algorithms (although we refrain
from doing this, as it invokes di!erent meanings in applied domains).

Another kind of algorithms, known as Las Vegas algorithms, have the following behavior: their output is
always correct, but the running time is a random variable (and in principle, the run time can be unbounded).

Sometimes, we can convert a Monte Carlo algorithm into a Las Vegas one. For instance, consider the toy
problem we considered last time (where an array  is promised to have  indices  for which  and
the goal was to "nd one such index). Now consider the following modi"cation of the algorithm:

Whenever the procedure terminates, we get an  that satis"es . But in principle, the algorithm can go
on for ever.

Another example of a Las Vegas algorithm is quick sort, which is a simple procedure for sorting an array.

Quick sort  

Suppose we are given an unsorted array  with  elements. Suppose for simplicity that all the elements of 
are distinct. The quicksort procedure works as follows:

procedure find_Vegas(A):

  pick random index i in [0, ..., N-1]

  while (A[i] != 0):

    pick another random index i in [0, ..., N-1]

  end while

  return i



The random index  chosen in the "rst step is often called the pivot element. Suppose for a moment that the
pivot always turned out to be the median (i.e. the th smallest element). Then we have the recurrence of 

, which results in a bound of , which matches the best algorithm
we've seen for sorting (merge sort).

But on the other hand, suppose we were unlucky, and the pivot always turns out to be the largest element of the
array. Then,  would have size , and it is easy to see that this results in an overall running time of 
. Note that for this to happen, we need to be unlucky in each of the recursive steps; indeed, a little bit of analysis
shows that the probability of this happening is .

Can we reason about the "typical" running time? Can we say that the running time is not >  with a pretty
good probability? We will see how to answer these kinds of questions.

Expected running time  

One key observation in the algorithms above is that the running time depends on the random choices, so in
other words, it is a random variable (r.v.). Thus, the questions we asked above about the running time are, in
e!ect, properties about the distribution of this random variable.

Recall that the expected value of a random variable  with probability density function  is, by de"nition, 

For a discrete random variable (one that takes values in a discrete set ), we have .

We can try using this de"nition to compute the running time of the algorithms above. Let us start with the
procedure "nd_Vegas(): by de"nition, if the while loop executes  times (each execution takes const time,
assuming that "nding a random index takes const time), it means that the "rst  times resulted in 
and the th time resulted in . This happens with probability .

Thus, the expected running time (for simplicity, assume that each execution of the loop takes  time step) is: 

Note that this is precisely like asking the expected number of tosses needed to see heads when tossing a coin
whose probability of heads is . The expectation turns out to be  -- but note that this involves summing an
appropriate in"nite series.

What about QuickSort? Note that it is now totally unclear how one estimates , where  is the r.v.
denoting the running time.

Thus, we need a nicer way of computing the expected value. The key turns out to be to come up with
recurrences for the expected value. Let us illustrate it "rst with the case of "nd_Vegas().

procedure quickSort(A):

  if (|A|=1), break and return A;

  let i be a random index in [0, ..., |A|-1]

  create new arrays B, C, where B contains all elements < A[i], and C contains all elements > 

A[i]

  recursively run quickSort(B) and quickSort(C)

  return the sorted array B, followed by A[i], followed by sorted array C



We will need one key property of the expected value:

Law of conditional expectation (also called law of total expectation, and other names). Let  be a random
variable, and let  be any event. Then we have .

In the above,  is the event that  does not occur. Also,  is the conditional expectation (i.e., the
expectation of the distribution of  conditioned on ).

Indeed, a more general version of the law also holds: let  be some set of disjoint events whose
union is the entire probability (i.e., precisely one of these events always occurs). Then we have 

Clearly, if we only have two events  and  we recover the earlier formulation.

Let us see how this is useful to analyze "nd_Vegas(). Let us denote by  the expected running time, i.e., 
. Now, let  be the event that in the !rst iteration, we "nd index  such that . Clearly, 

 and .

Plugging this into the law of conditional expectation, we get .

Now, the "rst expectation is clearly  (if the "rst index satis"es , the running time is ).

We next observe that the second expectation is precisely . This is because we know that the "rst iteration
was unsuccessful, and given that the process is history-independent, the situation after the "rst iteration is
precisely the same as the original one.

Plugging these values in, we get . Solving, we get  (no in"nite summations!)

Let us now see if this viewpoint lets us do something more non-trivial, like quickSort. To do this, let us de"ne

 expected running time of quickSort() on an array of size .

Implicit in this de"nition is the observation that the expected running time is independent of the array itself,
and it depends only on the size. This makes sense since we're dealing with arrays with all distinct elements, and
the procedure never uses anything about the original order of the elements.

We would now like to use the law of conditional expectation. For this, let us de"ne , for  to be the
event that the th smallest element is chosen as the pivot. Clearly, the events partition the probability space (in
every run, precisely one element is chosen as the pivot). Also, because we choose a random element, we have 

 for all .

Thus we have .

Now, for any , , because  and  are the sizes of the
recursive sub-problems, and we do  additional work. [Here we use the convention that ; let us
also denote the  term going forward by .]

This ends up with the recurrence .



A bit of simpli"cation yields .

Before simplifying, note what we have done: by de"ning  to be the expected running time on an array of
size , we have obtained a recurrence for , which we'll use to bound .

We claim by induction that . ('log' refers to the natural logarithm here)

Suppose the inequality holds for all integers . Then we need to prove that: 
 (**)

The "tricky" term is obviously . One way to simplify it is as follows:

Now, using the standard trick of estimating a summation using an integral, this is asymptotically equal to:

 [You can evaluate the integrals using Wolfram Alpha if
you're not comfortable with integration.]

Plugging this in, the LHS of (**) is less or equal to , as desired.

Comparing to merge sort. Quick sort's expected running time is asymptotically the same as the running time
of merge sort. But in many implementations (e.g., Unix sort), quick sort is the preferred sort procedure. It turns
out to be easy to implement, and one can easily sort "in place" (using  extra memory ---- although the way
we stated it formed new arrays  and , which takes  additional memory; it's a nice exercise to avoid
doing this).
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