
Lecture 14: Randomness in algorithm design  

Plan/outline  

So far, all the algorithms we saw were deterministic, i.e., given an input, they take precisely the same amount of
time, and produce precisely the same output. It turns out that for many problems, one can come up with much
more e!ective algorithms when we allow randomness in the algorithm. Today's class will focus on giving some
examples of this behavior.

Finding a frequent element in an array  

Let us start with a toy example.

Problem. Let  be an (unsorted) array with  elements, and we are promised that for at least  distinct
indices , . The goal is to "nd some  such that .

The trivial solution of iterating through the array to "nd such an index takes time  (as we may start at the
beginning, and the  terms could all be located after the "rst  positions.

Note, however, that if we select a random index , the probability of having  is at least . Now,
consider the following algorithm:

This process clearly only takes time  (assuming that generating a random index takes  time -- an
assumption that we make for now). What can we say about the correctness of the procedure? On the one hand,
it can fail, as none of the chosen indices satisfy . But the probability of this happening is 
(because for each index, we have a success probability , which means a failure probability , and the
indices are all independent). This decays exponentially with , so for say , the failure probabilty is
smaller than the probability of lightning striking any given point on earth at a given time. So for all practical
purposes, this algorithm works much better than a linear scan -- it only takes  amount of time!

Remarks. The algorithm assumes that the array  is already in memory, and we have random access.
Assuming this, the algorithm does not even read the entire input! (In this sense, the algorithm is similar to
sampling.) Also, by changing  in the algorithm, we also obtain a tradeo! between the success probability and
the running time.

Checking identities  

The problem is clearly a toy setting, but there are real problems that come remarkably close!

Procedure randomFind(A, r):

  pick 'r' random indices i_1, i_2, ..., i_r (with replacement)

  if A[i_t] = 0 for some t, output i_t



Problem: identity testing. Suppose we are given two polynomials  and  of degree . Is ?
(I.e., is  for all ?)

As an example, consider  and 
. The nice feature is that evaluating  and evaluating 

can both be done relatively quickly, given an . But expanding out  and matching with  can be
cumbersome.

Generalizations of this problem to the multivariate case (say we have variables ) have important
applications: consider two circuits (with input variables as leaves, and '+' and '*' operators in the internal
nodes). Suppose the goal is to test if the circuits compute the same polynomial function of the inputs. Similarly,
one might have di!erent ``evaluation trees'', and we might be interested to know if they represent the same
expression.

In all of these applications, we have a common problem: we are given polynomials  of degree  in 
variables, such that given some numeric values for the variables ,  and 

 can be found in time poly( ). But expanding out and checking if  can take time
exponential (in  or ).

Now, inspired by the topic of the day, we have the following algorithm: randomly choose values for 
in some large enough interval, and check if . If the values are equal, we
declare that , and if not, we declare that .

Now, if , the equality will always hold, and thus the algorithm outputs the right answer. The trouble is
that even if , we might have chosen  for which equality occurred for those values. Can we bound
the probability of this happening?

Let us analyze in the simple case where we have a single variable , and we have two degree  polynomials.
Now, suppose we set  to be a random integer in the range .

Claim. Let  be two degree  polynomials in one variable, and let  be a random integer in the range .
Then we have .

The claim says that the test above returns a false positive with probability .

Proof. Suppose . Then consider the polynomial . If  are of degree , then  has
degree . Thus by basic algebra, we know that  has at most  roots. In particular, at most  of the 
integers in the interval  can be roots of . Thus for a random , , which is
equivalent to the claim.

Generalization. A claim of this nature holds in much more generality, for polynomials of multiple variables,
even on "nite "elds. This is commonly known as the Schwartz-Zippel lemma. The general problem, known as
polynomial identity testing, is one of the fundamental problems in CS for which good probabilistic algorithms
are known, but we do not know of e#cient deterministic algorithms.

Perfect matching in a bipartite graph  

We next see a non-trivial application of identity testing. Consider the following problem:



Problem. Given a bipartite graph  (vertex sets are  and edge set ) determine if it is possible to
``pair up'' all the vertices of  and  such that (a) every element of  is paired with precisely one element of ,
and (b)  is paired with  only if  is an edge (in ).

Clearly, for such a pairing to be possible, we need  (otherwise some element of the larger set will be
left unpaired). But this is not enough. E.g., consider the graph:

In this graph, the set {1,2,3} on the left is only connected to {a,b} on the right, so there is no way of pairing the
vertices {1,2,3,4} with {a,b,c,d}. On the other hand, if we add the edge  to the graph, we have a perfect
matching -- (1, d), (2, a), (3, b), (4, c).

It turns out that the perfect matching problem can be solved in polynomial time using algorithms for the max
!ow problem, which we saw earlier. Let us now see a more "interesting" solution.

Consider an  matrix  (where ) whose rows correspond to vertices of  and columns to
vertices of . If  and  have an edge between them, then we place a variable called  in the th
position of . Otherwise, we place a  in the th position of . Thus, the matrix for the graph above would
be:

Now the key idea is to consider the determinant of this matrix, denoted det ). As the entries of  are
variables (or zeros), det ) is a polynomial in these variables (note that there are a total of  variables). The
main observation is now the following:

Claim. if the graph has a perfect matching, then , and if  has no perfect matching, .

Before we prove this claim, let us see why this implies a randomized algorithm for "nding a perfect matching.
Suppose we set the values of the variables to be random integers in some range (say ), then we can use
the Schwartz-Zippel lemma to conclude that if , then  evaluated at the random integers is 

 with probability . On the other hand, if , then the value will always be . Thus, consider
the following algorithm:



We can see that the algorithm outputs the correct answer with probability , and so the error
probability drops exponentially as  grows. The running time is precisely  times the time taken to compute the
determinant of an  matrix. It turns out that this is an extremely well-studied problem in numeric linear
algebra -- the best known algorithm takes time  (same as the time taken for matrix multiplication). Thus
the procedure is actually quite fast! (faster than most methods for the max $ow problem).

With this motivation, let us prove the claim above.

Proof of claim. The claim turns out to be a consequence of a well-known formula for the determinant of a
matrix: let  be an  matrix with entries . Then

The sign of a permutation is de"ned as the number of ``transpositions'' -- the interested reader should refer to a
good algebra textbook -- this de"nition of the determinant turns out to have some cool properties!

Once we understand this de"nition, the second part of the claim is immediate: if the graph has no perfect
matching, then for any permutation , one of the  terms when we are evaluating  would be zero, or
a non-edge (otherwise the permutation de"nes a valid perfect matching!). Thus each of the terms is zero,
implying that .

Now if the graph does have a perfect matching (for simplicity, suppose it is ), then the term 
 is a monomial that doesn't canceled by any other terms, and so this means that . This

proves the claim!

The argument is very elegant -- it uses the "permutation expansion" of the determinant (which has  terms) in
order to prove the claim, and for actually evaluating the determinant when (random) numeric values are
plugged in, the algorithm uses methods from numeric linear algebra to do it in  time.

Primality testing  

Another early application of randomized algorithms is the "Miller-Rabin test" for primality. Proposed in the
1970s, the algorithm gives a randomized procedure that can test if an -digit number is prime in time poly(n).
Note that the standard "check divisors until sqrt of the number" procedure from middle-school takes time 
(because an -digit number in binary is roughly of the order  and its square root is ).

The Miller-Rabin test uses some interesting yet basic number theory. If you are interested in the details, see the
wikipedia page, or the following notes which I thought were well-written:

Link to Sinclair's notes

procedure CheckPerfect(M, r): 

  for j = 1, ..., r:

    set the variables in M to random values in the interval [1,2n]

    evaluate det(M) with these choice of variables

    if (det(M) != 0), return "graph has a perfect matching"

  end for

  // if test above fails for all j ...

  return "graph has no perfect matching

https://people.eecs.berkeley.edu/~sinclair/cs271/n4.pdf


Recap and comments  

We saw some interesting examples of algorithms where (a) randomness was used, so two runs of the algorithm
on the same input need not yield the same answer, (b) the algorithm need not always output the right answer,
(c) as we increase the running time, the probability of correctness grows (in all the examples, the failure
probability dropped exponentially).

More such trade-o!s will appear in the next few lectures. We will also see another class of algorithms (called
"Las Vegas algorithms"), where the algorithm is always guaranteed to produce the right answer, but the running
time can depend on the random choices (i.e., sometimes the algorithm can be quite slow).
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