
Lecture 14: Randomness in algorithm design

Plan/outline

So far, all the algorithms we saw were deterministic, i.e., given an input, they take precisely the same amount of
time, and produce precisely the same output. It turns out that for many problems, one can come up with much
more e!ective algorithms when we allow randomness in the algorithm. Today's class will focus on giving some
examples of this behavior.

Finding a frequent element in an array

Let us start with a toy example.

Problem. Let be an (unsorted) array with elements, and we are promised that for at least distinct
indices , . The goal is to "nd some such that .

The trivial solution of iterating through the array to "nd such an index takes time (as we may start at the
beginning, and the terms could all be located after the "rst positions.

Note, however, that if we select a random index , the probability of having is at least . Now,
consider the following algorithm:

This process clearly only takes time (assuming that generating a random index takes time -- an
assumption that we make for now). What can we say about the correctness of the procedure? On the one hand,
it can fail, as none of the chosen indices satisfy . But the probability of this happening is
(because for each index, we have a success probability , which means a failure probability , and the
indices are all independent). This decays exponentially with , so for say , the failure probabilty is
smaller than the probability of lightning striking any given point on earth at a given time. So for all practical
purposes, this algorithm works much better than a linear scan -- it only takes amount of time!

Remarks. The algorithm assumes that the array is already in memory, and we have random access.
Assuming this, the algorithm does not even read the entire input! (In this sense, the algorithm is similar to
sampling.) Also, by changing in the algorithm, we also obtain a tradeo! between the success probability and
the running time.

Checking identities

The problem is clearly a toy setting, but there are real problems that come remarkably close!

Procedure randomFind(A, r):

 pick 'r' random indices i_1, i_2, ..., i_r (with replacement)

 if A[i_t] = 0 for some t, output i_t

Problem: identity testing. Suppose we are given two polynomials and of degree . Is ?
(I.e., is for all ?)

As an example, consider and
. The nice feature is that evaluating and evaluating

can both be done relatively quickly, given an . But expanding out and matching with can be
cumbersome.

Generalizations of this problem to the multivariate case (say we have variables) have important
applications: consider two circuits (with input variables as leaves, and '+' and '*' operators in the internal
nodes). Suppose the goal is to test if the circuits compute the same polynomial function of the inputs. Similarly,
one might have di!erent ``evaluation trees'', and we might be interested to know if they represent the same
expression.

In all of these applications, we have a common problem: we are given polynomials of degree in
variables, such that given some numeric values for the variables , and

 can be found in time poly(). But expanding out and checking if can take time
exponential (in or).

Now, inspired by the topic of the day, we have the following algorithm: randomly choose values for
in some large enough interval, and check if . If the values are equal, we
declare that , and if not, we declare that .

Now, if , the equality will always hold, and thus the algorithm outputs the right answer. The trouble is
that even if , we might have chosen for which equality occurred for those values. Can we bound
the probability of this happening?

Let us analyze in the simple case where we have a single variable , and we have two degree polynomials.
Now, suppose we set to be a random integer in the range .

Claim. Let be two degree polynomials in one variable, and let be a random integer in the range .
Then we have .

The claim says that the test above returns a false positive with probability .

Proof. Suppose . Then consider the polynomial . If are of degree , then has
degree . Thus by basic algebra, we know that has at most roots. In particular, at most of the
integers in the interval can be roots of . Thus for a random , , which is
equivalent to the claim.

Generalization. A claim of this nature holds in much more generality, for polynomials of multiple variables,
even on "nite "elds. This is commonly known as the Schwartz-Zippel lemma. The general problem, known as
polynomial identity testing, is one of the fundamental problems in CS for which good probabilistic algorithms
are known, but we do not know of e#cient deterministic algorithms.

Perfect matching in a bipartite graph

We next see a non-trivial application of identity testing. Consider the following problem:

Problem. Given a bipartite graph (vertex sets are and edge set) determine if it is possible to
``pair up'' all the vertices of and such that (a) every element of is paired with precisely one element of ,
and (b) is paired with only if is an edge (in).

Clearly, for such a pairing to be possible, we need (otherwise some element of the larger set will be
left unpaired). But this is not enough. E.g., consider the graph:

In this graph, the set {1,2,3} on the left is only connected to {a,b} on the right, so there is no way of pairing the
vertices {1,2,3,4} with {a,b,c,d}. On the other hand, if we add the edge to the graph, we have a perfect
matching -- (1, d), (2, a), (3, b), (4, c).

It turns out that the perfect matching problem can be solved in polynomial time using algorithms for the max
!ow problem, which we saw earlier. Let us now see a more "interesting" solution.

Consider an matrix (where) whose rows correspond to vertices of and columns to
vertices of . If and have an edge between them, then we place a variable called in the th
position of . Otherwise, we place a in the th position of . Thus, the matrix for the graph above would
be:

Now the key idea is to consider the determinant of this matrix, denoted det). As the entries of are
variables (or zeros), det) is a polynomial in these variables (note that there are a total of variables). The
main observation is now the following:

Claim. if the graph has a perfect matching, then , and if has no perfect matching, .

Before we prove this claim, let us see why this implies a randomized algorithm for "nding a perfect matching.
Suppose we set the values of the variables to be random integers in some range (say), then we can use
the Schwartz-Zippel lemma to conclude that if , then evaluated at the random integers is

 with probability . On the other hand, if , then the value will always be . Thus, consider
the following algorithm:

We can see that the algorithm outputs the correct answer with probability , and so the error
probability drops exponentially as grows. The running time is precisely times the time taken to compute the
determinant of an matrix. It turns out that this is an extremely well-studied problem in numeric linear
algebra -- the best known algorithm takes time (same as the time taken for matrix multiplication). Thus
the procedure is actually quite fast! (faster than most methods for the max $ow problem).

With this motivation, let us prove the claim above.

Proof of claim. The claim turns out to be a consequence of a well-known formula for the determinant of a
matrix: let be an matrix with entries . Then

The sign of a permutation is de"ned as the number of ``transpositions'' -- the interested reader should refer to a
good algebra textbook -- this de"nition of the determinant turns out to have some cool properties!

Once we understand this de"nition, the second part of the claim is immediate: if the graph has no perfect
matching, then for any permutation , one of the terms when we are evaluating would be zero, or
a non-edge (otherwise the permutation de"nes a valid perfect matching!). Thus each of the terms is zero,
implying that .

Now if the graph does have a perfect matching (for simplicity, suppose it is), then the term
 is a monomial that doesn't canceled by any other terms, and so this means that . This

proves the claim!

The argument is very elegant -- it uses the "permutation expansion" of the determinant (which has terms) in
order to prove the claim, and for actually evaluating the determinant when (random) numeric values are
plugged in, the algorithm uses methods from numeric linear algebra to do it in time.

Primality testing

Another early application of randomized algorithms is the "Miller-Rabin test" for primality. Proposed in the
1970s, the algorithm gives a randomized procedure that can test if an -digit number is prime in time poly(n).
Note that the standard "check divisors until sqrt of the number" procedure from middle-school takes time
(because an -digit number in binary is roughly of the order and its square root is).

The Miller-Rabin test uses some interesting yet basic number theory. If you are interested in the details, see the
wikipedia page, or the following notes which I thought were well-written:

Link to Sinclair's notes

procedure CheckPerfect(M, r):

 for j = 1, ..., r:

 set the variables in M to random values in the interval [1,2n]

 evaluate det(M) with these choice of variables

 if (det(M) != 0), return "graph has a perfect matching"

 end for

 // if test above fails for all j ...

 return "graph has no perfect matching

https://people.eecs.berkeley.edu/~sinclair/cs271/n4.pdf

Recap and comments

We saw some interesting examples of algorithms where (a) randomness was used, so two runs of the algorithm
on the same input need not yield the same answer, (b) the algorithm need not always output the right answer,
(c) as we increase the running time, the probability of correctness grows (in all the examples, the failure
probability dropped exponentially).

More such trade-o!s will appear in the next few lectures. We will also see another class of algorithms (called
"Las Vegas algorithms"), where the algorithm is always guaranteed to produce the right answer, but the running
time can depend on the random choices (i.e., sometimes the algorithm can be quite slow).

	Lecture 14: Randomness in algorithm design
	Plan/outline
	Finding a frequent element in an array
	Checking identities
	Perfect matching in a bipartite graph
	Primality testing
	Recap and comments

