Advanced Algorithms

Lecture 18: Sampling

Announcements

- HW 3 graded
- HW 4 due on Friday

Randomized alg recap

repetition

- Hashing - analyzed via "balls and bins"
- Key ideas:
- define appropriate random variables
- linearity of expectation, Markov's inéquality, Union bound, ...

$$
\mathbb{E}[x+y]=\mathbb{E}[x]+\mathbb{E}[y]
$$

Recap

Markov's inequality: let X be a non-negative random variable with expectation C. Then $\operatorname{prob}[X>t C]<=1 / t$.

Union bound: let $E_{1}, E_{2}, \ldots E_{\mathrm{n}}$ be any collection of events in a probability space. Then we have

$$
\begin{gathered}
\operatorname{Pr}\left(E_{1}-\text { or- } E_{2}-\text { or- } \ldots-\operatorname{or}-E_{n}\right)<=\operatorname{Pr}\left(E_{1}\right)+\operatorname{Pr}\left(E_{2}\right)+\ldots+\operatorname{Pr}\left(E_{n}\right) \\
\text { becomes equality if } \\
E_{i} \text { are all disjoint. }
\end{gathered}
$$

Sampling / estimation

Average of elements in array

$[-1,1]$
Problem: let A be an array with n elements, each in interval [0,4$]$. Find the average of all elements.

- Twist: suppose we are OK with a little bit of error (+/- 0.01)
- Basic sampling algorithm:
- sample k of the elements (with replacement), find their "empirical average" (sum/k)

Trade-offs

Key quantities:

- Number of samples (k)
- Error in result (+/- "true average")

$$
\geqslant 90 \%
$$

- Confidence in result (error bound holds w.p. ...)

Formalizing sampling
$X_{i}^{\prime} s$ are all independent
r.v.s.

Right random variable?
X_{i} : value of the i^{\prime} th
sample $\left[\begin{array}{c}\text { could } \\ \text { be-ve }\end{array}\right]$. \hat{X} : empincal average of samples.

$$
\hat{x}:=\frac{x_{1}+x_{2}+\ldots+x_{k}}{k}
$$

$$
1 / n
$$

$\left.\begin{array}{r}\text { What is } \mathbb{E}\left[X_{i}\right] ?=\sum_{j=1}^{n} \operatorname{Pr}\left[\begin{array}{c}i^{\prime} \text { 'th " sample } \\ \text { was } \\ \\ \\ \hline\end{array}[j]\right.\end{array}\right] . A[j]=\mu$

Vanilla Markov
What is $\mathbb{E}[\hat{x}] ?=\sum_{i=1}^{k} \frac{\mathbb{E}\left[x_{i}\right]}{k}=\mu$.

But if $A[i]$ were all in [0,1], you can use Markov, and get

$$
\operatorname{Pr}[\hat{x} \geqslant t \underset{1}{t}] \leq \frac{1}{t} \quad[\text { say } t=4]
$$

Variance

$$
\begin{aligned}
\operatorname{Var}(\hat{x}):=\mathbb{E}[(\hat{x}-\underbrace{\mathbb{E}(\hat{x})}_{\mu})^{2}] & =\mathbb{E}\left[(\hat{x}-\mu)^{2}\right] . \\
\hat{\mu} & \hat{x}=\frac{x_{1}+x_{2}+\ldots+x_{k}}{k}
\end{aligned}
$$

intuitively, the "average squared distance" to the mean.

$$
\mathbb{E}\left[(\hat{X}-\mu)^{2}\right]=\mathbb{E}\left[\left(\frac{x_{1}+x_{2}+\cdots+x_{k}}{k}-\mu\right)^{2}\right]=\mathbb{E}\left[\left(\overline{\left(x_{1}-\mu\right)+\ldots+\left(x_{k}-\mu\right.}\right)^{2}\right]
$$

Variance of a sum

$$
\begin{aligned}
V & =\mathbb{E}[(\underbrace{}_{1} \frac{\mu}{1}-\mu\left(x_{2}-\mu\right)+\ldots+\left(x_{k}-\mu\right))^{2}] \\
k & \left(a_{1}+a_{2}+\cdots+a_{k}\right)^{2} \\
& =\sum_{i} a_{i}^{2}+\sum_{i \neq j} a_{i} a_{j} \\
& =\frac{1}{k^{2}}\left\{\sum_{i} \mathbb{E}\left[\left(x_{i}-\mu\right)^{2}\right]+\sum_{i \neq j} \mathbb{E}\left[\left(x_{i}-\mu\right)\left(x_{j}-\mu\right)\right]\right\}
\end{aligned}
$$

Take one term of the second kind:

$$
\mathbb{E}\left[\left(x_{i}-\mu\right)\left(x_{j}-\mu\right)\right] \rightarrow \mathbb{E}\left[\left(x_{i}-\mu\right)\right] \cdot \mathbb{E}\left[x_{j}-\mu\right]
$$

Fact: if x, y are independent $r \cdot v . s$, then $\mathbb{E}[x y]=\mathbb{E}[x] \cdot \mathbb{E}[y]$.

$$
\begin{aligned}
& \mathbb{E}\left[x_{i}-\mu\right]=\underbrace{\mathbb{E}\left[x_{i}\right]-\mu}_{\mu \mu}=0 . \\
& V=\frac{1}{k^{2}} \cdot \sum_{i=1}^{k} \underbrace{\mathbb{E}\left[\left(x_{i}-\mu\right)^{2}\right]}_{\leq 4} \leq \frac{4 k}{k^{2}}=\frac{4}{k} .
\end{aligned}
$$

$$
\mathbb{E}[|\hat{x}-\mu|]
$$

Sample size and variance
If we take k samples, define $\hat{x}=\frac{x_{1}+\cdots+x_{k}}{k}$,
then $\quad \overline{\operatorname{var}(\hat{x}) \leq \frac{4}{k}}$.

$$
\begin{gathered}
\mathbb{E} \underbrace{\left[(\hat{x}-\mu)^{\prime \prime}\right]}_{V} \int \operatorname{Pr}\left[(\hat{x}-\mu)^{2}>4 V\right] \leq \frac{1}{4} \\
\Downarrow \\
\operatorname{Pr}\left[|\hat{x}-\mu|>\frac{4}{\sqrt{k}}\right] \leq \frac{1}{4}
\end{gathered} \Leftrightarrow \operatorname{Pr}\left[(\hat{x}-\mu)^{2}>\frac{16}{k}\right] \leq \frac{1}{4} .
$$

Chebychev's inequality

Theorem: Let X be any random variable with and mean $=\mu$
variance $=\sigma^{2}$. Then for all $t \geqslant 1$,

$$
\operatorname{Pr}[|x-\mu| \geq t \sigma] \leq \frac{1}{t^{2}}
$$

$$
\begin{aligned}
& \sigma^{2}=\frac{4}{k} \\
& \text { or } \sigma=\frac{2}{\sqrt{k}}
\end{aligned}
$$

$\sigma: s+d$-deviation
Proof:
By
Markov

$$
\mathbb{E}\left[(X-\mu)^{2}\right]=\sigma^{2}\left[\begin{array}{c}
\text { diff of variance being } \\
\sigma^{2}
\end{array}\right]
$$

$$
\operatorname{Pr}\left[(x-\mu)^{2}>t^{2} \cdot \sigma^{2}\right] \leq \frac{1}{t^{2}}
$$

$$
\mid x_{-\mu} \stackrel{\|}{\|}>t \sigma
$$

Confidence bounds
If we an algorithm that outputs \hat{X}, then

$$
\rightarrow \operatorname{Pr}_{r}\left[|\hat{x}-\mu|>\frac{4}{\sqrt{k}}\right]<\frac{1}{4}
$$ (k samples)

Suppose we take $k=16 \cdot 10^{4}$ samples

$$
\operatorname{Pv}[|\hat{x}-\mu|>0.01]<\frac{1}{4} \Rightarrow \begin{aligned}
& w \cdot p \cdot \geqslant \frac{3}{4} \\
& \\
& |\hat{x}-\mu| \leq 0.01
\end{aligned}
$$

$$
\begin{aligned}
& P_{r}\left[|\hat{x}-\mu|>\frac{2 t}{\sqrt{k}}\right] \leq \frac{1}{t^{2}} \quad\left[\begin{array}{c}
\text { Came from Chebydew's } \\
\text { ines. }
\end{array}\right. \\
& \text { Suppose we want confidence }=\frac{99}{100} \\
& \text { we will plug in } t=10 \\
& \text { and } k=4 \cdot \frac{100 \cdot 10^{4} ;}{} \quad \frac{2 t}{\sqrt{k}}=0.01 \\
& \operatorname{Pr}[|\hat{x}-\mu|>0.01]<\frac{1}{100}
\end{aligned}
$$

How "tight" is variance bound?

$$
\mathbb{t}\left[\left(x_{i}-\mu\right)^{2}\right], \leq 4^{\rightarrow \frac{1}{2}}
$$

- I.e., is the error in estimation truly around $1 / \backslash$ sqrt k ?
- For "bounded" random variables, variance calculation is fairly tight
- Central limit theorem

If variance of each $X_{i} \approx 1$ then $\pm \frac{1}{\sqrt{k}}$ if we want error $\approx \varepsilon$, then \#samples

$$
\approx \frac{1}{\varepsilon^{2}}
$$

Higher "moments"?

- What if we compute fourth powers?
- Chernoff bound

Average of elements in array

Problem: let A be an array with n elements, each in interval [0,1]. Find the average of all elements.

- Bound on entries is important ...

Applications of sampling

Problem: predicting an election; say everyone votes R or B

Procedure, trade-offs

Trade-offs

- Number of samples (k)
- Error in result (+/- "true average")
- Confidence in result (error bound holds w.p. ...)
- How close is the margin in the true population?

