Define X_{i} : random variable whose value is the value of the i^{\prime} th sample
(each X_{i} is a random element of the array)

Also note: $\quad X_{i}$ are independent for different i

Expected values:
For each $i, \quad \mathbb{E}\left[X_{i}\right]=\mu$, avg. of elements of the array

Algorithm's estimate is

$$
\hat{x}=\frac{1}{k}\left(x_{1}+x_{2}+\cdots+x_{k}\right)
$$

By linearity of expectation,

$$
\mathbb{E}[\hat{x}]=\mu .
$$

Key new computation:
Variance, defined as $V=\mathbb{E}\left[(\hat{x}-\mu)^{2}\right]$

$$
\begin{aligned}
V & =\mathbb{E}\left[\left(\frac{x_{1}+x_{2}+\ldots+x_{k}}{k}-\mu\right)^{2}\right] \\
& =\mathbb{E}\left[\left(\frac{\left(x_{1}-\mu\right)+\left(x_{2}-\mu\right)+\ldots+\left(x_{k}-\mu\right)}{k}\right)^{2}\right]
\end{aligned}
$$

Expanding gives two kinds of terms:
A) $\mathbb{E}\left[\frac{\left(X_{i}-\mu\right)^{2}}{k^{2}}\right]$
B) $\mathbb{E}\left[\frac{\left(x_{i}-\mu\right)\left(x_{j}-\mu\right)}{k^{2}}\right]$

Due to sampling with replacement, terms of type B

$$
\begin{aligned}
& \text { are }=0! \\
& \therefore V=\frac{1}{k^{2}} \sum_{i=1}^{k} \mathbb{E}\left[\left(x_{i}-\mu\right)^{2}\right] \leq \frac{4}{k^{2}} \cdot k=\frac{4}{k} .
\end{aligned}
$$

Moral:
Variance reduces as \# samples (k) increases

Now, what if we use Markov's ineq on

$$
V=\mathbb{E}\left[(\hat{x}-\mu)^{2}\right] ?
$$

We get $P_{v}\left[(\hat{x}-\mu)^{2}>4 \cdot \frac{4}{k}\right] \leq \frac{1}{4}$
Or equivalently, $\quad P_{V}\left[|\hat{x}-\mu|>\frac{4}{\sqrt{k}}\right] \leq \frac{1}{4}$.
This can be generalized (called Chebycheo's ineq.)

$$
P_{\delta}\left[|\hat{x}-\mu|>\frac{2 t}{\sqrt{k}}\right] \leq \frac{1}{t^{2}}
$$

$\therefore \quad w \cdot p . \geqslant \frac{3}{4}$, we have $|\hat{x}-\mu| \leq \frac{4}{\sqrt{k}}$
I.e., estimate has error $\leq \frac{4}{\sqrt{k}}, w . p . \geqslant \frac{3}{4}$.

Set $k=16 \cdot 10^{4} \leadsto$ error ≤ 0.01

Moral: more samples \Rightarrow better accuracy!

Variance is a fundamental quantity of random variables.

Prob. value of $3 / 4$ can be boosted much further.

- Can compute "higher moments"

$$
\mathbb{E}\left[(\hat{x}-\mu)^{k}\right], \ldots
$$

- Chernoff bound

