Advanced Algorithms

Lecture 17: Balls and bins (contd.), sampling

Announcements

- HW 4 due next Friday

$$
\begin{aligned}
& \text { Last lecture } \\
& \operatorname{Rr}[\text { randem in }>t \cdot \mathbb{E}] \leq \frac{1}{t}
\end{aligned}
$$

- Markov's inequality and why "expectation" analysis often suffices
- Hashing, throwing balls into bins
- Key analysis methods:
- define appropriate random variables
- linearity of expectation
- expectations easy to compute if r.v.s are "binary"

Recap: Markov's inequality

Markov's inequality: let X be a non-negative random variable with expectation C. Then prob $[X>t C]<=1 / t$.
the prob. that

- Note: Markov's inequality does not give any bounds on r.v. much smaller than expectation
us

Today's plan

- Answer final question about balls-and-bins
- Union bound
- More comments on hashing
- Sampling - estimation, variance

Some questions

Problem: suppose we have n balls and m bins. Imagine throwing the balls into bins, independently and uniformly at random.

- What is the expected size of each bin ? $\left(m^{\prime \prime} / n\right) \quad($ when $m=n)$
- Suppose $n=m$; What is the expected number of bins with exactly 4 balls? [~ n/(24e) ~n/65]
- Suppose $n=m$; What is the probability that there exists a bin with ($\log \mathrm{n})$ balls?

$$
\leq \frac{1}{n}
$$

Number of bins with $\log n$ balls

$$
\operatorname{Pr}[x \geqslant 1] ?=1-\operatorname{Pr}[x=0]
$$

indicates y
$Y_{i}:=r \cdot v$. that, infin i receives balls.

$$
\text { By defer, } \begin{aligned}
x & =y_{1}+y_{2}+\ldots+y_{n} . \\
\operatorname{Pr}[x \geqslant 1] & =\operatorname{Pr}\left[\left(y_{1}=1\right) \underset{\bar{J}}{\left.v\left(y_{2}=1\right) v \ldots v\left(y_{n}=1\right)\right] .}\right. \\
& \leq \operatorname{Pr} \underbrace{}_{\left.\underline{R}\left(y_{1}=1\right)\right]}+\operatorname{Pr}\left[y_{2}=1\right] \ldots \ldots \operatorname{Pr}\left[y_{n}=1\right]
\end{aligned}
$$

Prone bin having k balls]
what is $\operatorname{Pr}\left[y_{1}=1\right]$?
11

$$
\binom{n}{k} \cdot\left(\frac{1}{n}\right)^{k}\left(\frac{n-1}{n}\right)^{n-k} \sim \leq\left(\frac{e}{k}\right)^{k}
$$

Stirling approximation: $\binom{n}{k} \leq\left(\frac{n \cdot e}{k}\right)^{k}$
(Conceq. of)

$$
\begin{aligned}
\leq\left(\frac{\not x e}{k}\right)^{k}\left(\frac{(n-1)^{n-k}}{n^{n-k}}\right. & \left(\frac{2.718}{k}\right)^{k}
\end{aligned} \sim\left(\frac{3}{100}\right)^{100} \ll 1
$$

What of $k=\log n$?

$$
\xrightarrow{\left(\frac{e}{k}\right)^{k}} \xrightarrow[\left(\frac{e}{\log n}\right)^{\log n}]{e}
$$

$$
\frac{1}{m}=\frac{\log n}{\log \cos n}
$$

For large enough $n, \frac{e}{\log n}<\frac{1}{10}$

$$
\begin{aligned}
&\left(\frac{e}{\log n}\right)^{\log n}<\left(\frac{1}{10}\right)^{\log n}<\frac{1}{n^{2}} \\
& \operatorname{Pr}\left[y_{1}=1\right]<\frac{1}{n^{2}} \Rightarrow \operatorname{Pr}\left[y_{1}=1\right]+\operatorname{Pr}\left[y_{2}=1\right]+\ldots+\operatorname{Pr}\left[y_{n}=1\right] \\
& \leq n \cdot \frac{1}{n^{2}} \leq \frac{1}{n} .
\end{aligned}
$$

$$
\begin{aligned}
& x=y_{1}+y_{2}+\cdots+y_{n} \\
& \operatorname{Pr}\left[y_{1}=1\right] \leq \frac{1}{n^{2}} \Rightarrow \mathbb{E}\left[y_{1}\right] \leq \frac{1}{n^{2}} \\
& \Rightarrow \mathbb{E}[x] \leq \frac{1}{n} \\
& \operatorname{Pr}[x \geqslant n \cdot \mathbb{E}[x]] \leq \frac{1}{n} \\
& \operatorname{Pr}[x \geqslant 1] \leq \frac{1}{n} .
\end{aligned}
$$

The union bound

Suppose $\varepsilon_{1}, \varepsilon_{2}, \ldots,-\varepsilon_{n}$ are events in some prob. Space. Then $\operatorname{pr}\left[\varepsilon_{\underline{1}} \vee \varepsilon_{2} \vee \ldots \vee \varepsilon_{n}\right] \leq \sum_{i=1}^{n} \operatorname{Pr}\left[\varepsilon_{i}\right]$.
\rightarrow Becomes equality ff ε_{i} are all disjoint . (ie, $\operatorname{Pr}\left[\varepsilon_{i} \wedge \varepsilon_{j}\right]$

$$
\text { for all } i, j=0 \text {. }
$$

$$
n=3
$$

\rightarrow Inclusion / Exclusion formula: (for all ε_{i}).

$$
\begin{aligned}
\operatorname{Pr}\left[\varepsilon_{1} \vee \varepsilon_{2} \vee \varepsilon_{3}\right]= & \operatorname{Pr}\left[\varepsilon_{1}\right]+\operatorname{Pr}\left[\varepsilon_{2}\right]+\operatorname{Pr}\left[\varepsilon_{3}\right]-\operatorname{Pr}\left[\varepsilon_{1} \wedge \varepsilon_{2}\right]- \\
& \operatorname{Pr}\left[\varepsilon_{1} \wedge \varepsilon_{3}\right]-\operatorname{Pr}\left[\varepsilon_{2} \wedge \varepsilon_{3}\right]+\operatorname{Pr}\left[\varepsilon_{1} \wedge \varepsilon_{2} \wedge \varepsilon_{3}\right.
\end{aligned}
$$

Conclusions

Suppose $\mathrm{n}=\mathrm{m}$:

- What is the expected size of each bin? (1)
- What is the expected number of bins with exactly 4 balls? [$\sim \mathrm{n} /$ (24e) ~n/65] \checkmark
- What is the probability that there exists a bin with $(\log n)$ balls? $\leq \frac{1}{n}$
- Maximum " $\operatorname{load"~}=\log n /(\log \log n)$

$$
\left[\underset{\text { who. pep- }}{\text { typically, }} \text { there exists a bin with } \frac{\log n}{\log \lg n}\right. \text { balls.]. }
$$

Random hashes 20.

- Hash a set of n elements $/$ into memory of size n

- Size of max bin $=\log n \eta(\log \log n) *$. (linear probing takes
- How large should memory be, so that max load is 1? 4? in the worst case.)

$$
\Sigma_{,}
$$

$$
n^{5 / 4} .
$$

- Better than random assignment? (power of two choices)

$$
\left.\begin{array}{l}
h_{1} \\
h_{2}
\end{array}\right\} \text { random hash fus }
$$

h^{\prime} : defined ituatively

$$
\begin{array}{r}
h^{\prime}(i):=\text { "less-crowded" of } h_{1}(i) \\
\& h_{2}(i)
\end{array}
$$

$$
\begin{aligned}
& \max \cdot \text { bin sige }=\log \log n \\
& \frac{\log \log n}{\log b} .
\end{aligned}
$$

Balls and bins vs. hashing

(Src: wikipedia)

Sampling / estimation

Sum of elements in array

Problem: let A be an array with n elements, each in interval [0,1$]$. Find sum of all elements.

$$
\text { Sum } \in[-n, n] \text {. }
$$

- Twist: suppose we are OK with a little bit of error ($\sim 0.01 n$)

Alg: Sample k elements $w / r e p l a c e m e n t ;$

- Compute sum of sample
- rescale by factor $\frac{n}{k}$.

Sum of elements in array

Problem: let A be an array with n elements, each in interval $[0,1]$. Find sum of all elements.

- Twist: suppose we are OK with a little bit of error ($\sim 0.01 n$)
- Natural idea: sampling and re-scaling
- Questions: how bad can error be? With what probability?
"confidence intervals"

Trade-offs

Key quantities:

- Number of samples (k)
- Error in result (more samples \Rightarrow smaller error)
- Confidence in result $(11 \Rightarrow$ more confidence.).

Formalizing sampling

Variance

Sample size and variance

Chebychev's inequality

