
Advanced Algorithms
Lecture 17: Balls and bins (contd.), sampling



Announcements

• HW 4 due next Friday
-



Last lecture

• Markov’s inequality and why “expectation” analysis often suffices 

• Hashing, throwing balls into bins 

• Key analysis methods:  

• define appropriate random variables 

• linearity of expectation 

• expectations easy to compute if r.v.s are “binary”
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Recap: Markov’s inequality

Markov’s inequality:  let X be a non-negative random variable with 
expectation C.  Then prob[X > tC] <= 1/t.

• Note: Markov’s inequality does not give any bounds on whether r.v. 
can be much smaller than expectation
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Today’s plan

• Answer final question about balls-and-bins 

• Union bound 

• More comments on hashing 

• Sampling — estimation, variance



Some questions

Problem:  suppose we have n balls and m bins. Imagine throwing the 
balls into bins, independently and uniformly at random.

• What is the expected size of each bin? (m/n) 

• Suppose n = m; What is the expected number of bins with exactly 4 
balls?  [~ n/(24e) ~ n/65 ] 

• Suppose n = m; What is the probability that there exists a bin with 
(log n) balls?
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Number of bins with log n balls
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P[one bin having k balls]
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What if k = log n ? =
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✓ in i

⇐ I
'

-

- lean
'

' =

-

For large enough n
,

Efg
,

L to

heal
' '

.

' "

ant .

PREY
,

=D cut ⇒ Prf 't 't ] -113142 -
. ft .  - - tPrfY=B

. Em . Iz EIn .



X -

- Y ,
t 4

,
t - -

.

t Yn '

1714=1 ) ⇐I .

⇒ ELY , ) e 's .

⇒ Efx ] e In .

Pr ( X >n . EKD E In .

I
'

Pr ( x > I ] E In -



The union bound
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Conclusions

Suppose n = m: 

• What is the expected size of each bin? (1) 

• What is the expected number of bins with exactly 4 balls?  [~ n/
(24e) ~ n/65 ] 

• What is the probability that there exists a bin with (log n) balls? 

• Maximum “load” = log n / (log log n)
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Random hashes

• Hash a set of n elements into memory of size n 

• Size of max bin = log n / (log log n) 

• How large should memory be, so that max load is 1? 4? 

• Better than random assignment? (power of two choices)

⇒ -

' 'Et
÷÷?-

A . ( linear probingYYI.me

[ Azar ,
Broder

, . . . ] .

#

b diff .

hash fins .



m n

'

→
o

ah! g.random hash fns

2 O O if'm
.

,

\ '

. hdi )
'

h
'

: defined iteratively
n .

0 O

h' ( i )
"

less -

crowded
"

of h.li )

khalil

max .
bin size = log log n

loglogh

Fb
-



Balls and bins vs. hashing

(Src: wikipedia)

• Function defined over the 
whole universe 

• Function eval must be 
“cheap” 

• Must do as well as random 
assignment

h ( n ) as uniformly
random
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Sampling / estimation
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Sum of elements in array

Problem:  let A be an array with n elements, each in interval [0,1]. Find 
sum of all elements.

• Twist:  suppose we are OK with a little bit of error (~ 0.01 n)
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Sum of elements in array

Problem:  let A be an array with n elements, each in interval [0,1]. Find 
sum of all elements.

• Twist:  suppose we are OK with a little bit of error (~ 0.01 n) 

• Natural idea: sampling and re-scaling 

• Questions: how bad can error be? With what probability? 
“confidence intervals”
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Trade-offs

Key quantities: 

• Number of samples 

• Error in result 

• Confidence in result
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Formalizing sampling



Variance



Sample size and variance



Chebychev’s inequality


