Advanced Algorithms

Lecture 16: Balls and bins



Announcements
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e Mid-term poll: discussion
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Randomized algorithms:
analysis

e In some cases: trade-off between running time & probability of
correctness (e.g., identity testing, ...)

e Las Vegas algorithms: always correct, but running time can
sometimes be large (e.g., quick sort)
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Expected running time

¢ Run time is a random variable — e.g., quick sort

¢ Choose random number of the array as the “pivot”, divide array
into two parts, sort recursively

e Aslong as split is “roughly balanced”, problem size reduces

significantly -
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e Can write a recurrence for the expected running time "
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e Law of “conditional expectation”
X] = p(F) - EX[F] + (1 - p(F)) - E|X[F]
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Expectation good enough?

e Suppose that the expected running time is O(n log n)

e Can we upper bound probability that it is (say) n2? —

¢ What about nt5 ?
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General result

e Implication for quick sort?
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Today'’s plan

¢ Understanding hashing via “balls and bins”

e Linearity of expectation




Hashing

al hash 3 NP
keys function hashes
: 00
John Smith
01
Lisa Smith -
03
= 04
Sam Doe
05
Sandra Dee '
15

(Src: wikipedia)



Hashing
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What one hopes:

- e Don’t know keys beforehand

e Small set of hash values (~ #
of keys)

e Few “collisions”

Designing hash functions can be tricky...



Balls and bins




Some questions

e What is the expected size of each bin?
——————

e Suppose n = m; What is the expected number of bins with exactly 4

balls? ) c. M
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e Suppose n =m; Wﬁmat is the probability that there exists a bin with
(log n) balls?



Expected size of @ bin 1

Definition of expectation:
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Expected size of a bin

Definition of expectation:

Moral from last week: never compute expectations using the definition!



Linearity of expectation




Expected size of a bin
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(= m)
Expecteo #kof bins with 4 balls




Expected # ot bins with 4 balls



Some questions

e What is the expected size of each bin?

e Suppose n = m; What is the expected number of bins with exactly 4
balls?

e Suppose n = m; What is the probability that there exists a bin with
(log n) balls?




The union bound



The union bound



