Advanced Algorithms

Lecture 15: Expected running times



Announcements

e Mid-term grades out

e Course grading: common question

e not absolute grading
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Randomized algorithms

e Saw some examples:

¢ Finding “commonly occurring” element in array
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o Testing if two polynomials are identically equal [CH M*MGS“\ ' \

e Checking if a bipartite graph has a perfect matching
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Randomized algorithms

e Saw some examples:

7 e Finding “commonly occurring” element in array

Finding hay in a

e Testing if two polynomials are identically equal haystack...

e Checking if a bipartite graph has a perfect matching

e Trade-off between “success probability” and running time

e Las Vegas algorithms: always succeed, but running time can be
ya large with some probability (no error)



Today'’s plan

e Expected running time

e Why expectation is “good enough” (in most cases)



Expectation of a random variable

e Definition: given a random variable X, the expected value of X is

0(X] = [%, 0 pla)de 0 L w0t

X

N ’g\w\d{m _ p(x) is the p.d.f. of X
—>

- X




Basic examples
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e Gaussian N(0,1)~[€ M: 0

e Discrete Bernoulli \
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Expected running time
A[Oz T n«\'g

e Recall problem from last class —1/3 of the A[1] are 0, find one 1

e While not found: pick random index i and check if A[i]=0
i ———

(similar to tossing until seeing heads)
Running time is a random variable
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Recurrence for the expectation

e What is the expected number of tosses of a fair coin® :\o»%we ng\fﬁ
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Recurrence for the expectation
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e What is the expected number of tosses of a fair coin? —)
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e Useful identity for E[X]. For any event F,

3[X] = p(F) - E[X|F] + (1 — p(F)) - E[X|F]
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Recurrence for the expectation

e What is the expected number of tosses of a fair coin?
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Quick sort

Problem: given unsorted array A|O, ..., n-1], sort it.

Al
e Pick a random element of A as the “pivot” = 2. ol STy % A ;<a A0

e Partition A into sub-arrays B and C 7 - TR A>aldl

e Recursively sort B, C, and concatenate answers
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How long can it take?
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e If so, with what probability? )

e Can it take n2 time?

What is the expected running time?




Good and bad pivots
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e Key observation: it suffices to encounter log n “good pivots”
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Expected running time
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Recurrence for expected time
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Solving the recurrence
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From expectation to guarantee

Markov’s inequality: let X be a non-negative random variable with

expectation C. Then prob[X > tC] <= 1/1.

e Implication for quick sort?

e “Boosting probability”



Amplitication by repetition



