Advanced Algorithms

Lecture 15: Expected running times

Announcements

- Mid-term grades out
- Course grading: common question
 - not absolute grading

3 Mid-term course survey.

Randomized algorithms

- Saw some examples:
 - Finding "commonly occurring" element in array
 - Testing if two polynomials are identically equal (circuit dusign, --)
 - Checking if a bipartite graph has a perfect matching

Randomized algorithms

• Saw some examples:

- Finding "commonly occurring" element in array
 Testing if two polynomials are identically equal
 Checking if a bipartite graph has a perfect matching

Finding hay in a haystack...

- Trade-off between "success probability" and running time
- Las Vegas algorithms: always succeed, but running time can be >> large with some probability (no error)

Today's plan

- Expected running time
- Why expectation is "good enough" (in most cases)

Expectation of a random variable

<u>Definition:</u> given a random variable X, the expected value of X is

$$\mathbb{E}[X] := \int_{-\infty}^{\infty} x \cdot p(x) dx \quad \leadsto \quad \sum_{\chi} \chi \cdot p(\chi = \chi)$$

p.d.f. — prob. density p(x) is the p.d.f. of X

Basic examples

$$\begin{cases} b(x) = \begin{cases} id \\ x \in [0,1] \end{cases} \\ o o \text{ wise} \end{cases}$$

- Unif [0,1]
- Gaussian N(0,1)
- Discrete Bernoulli

$$b(x) = \frac{1}{\sqrt{2\pi}}$$

$$E[X] = \frac{2}{3} \cdot 0 + \frac{1}{3} \cdot 1 = \frac{1}{3}$$

Expected running time

$$A[0,\ldots,n-i].$$

- Recall problem from last class $-\sqrt{1/3}$ of the A[i] are o, find one i
- While not found: pick random index i and check if A[i]=0

Expected Running Time

(similar to tossing until seeing heads)
Running time is a <u>random variable</u>

X: running time of algorithm.

$$E[X] = \sum_{x=1}^{\infty} x \cdot P_r[X=x] = \sum_{x=1}^{\infty} x \cdot \frac{1}{3} \cdot \left(\frac{2}{3}\right)^{x-1}$$

$$= 3 \cdot \left(\frac{2}{3}\right)^{x-1} \cdot \frac{1}{3} \cdot \left(\frac{2}{$$

Recurrence for the expectation

• What is the expected number of tosses of a fair coin? before seeing heads?

Recurrence for the expectation

• Useful identity for E[X]. For any event F,

Recurrence for the expectation

• What is the expected number of tosses of a fair coin?

What is the expected number of cosses of a ran configuration of the event that first toss = heads
$$x = \frac{1}{1 + \frac{1}{2}} = \frac{x}{2}$$

$$x = \frac{1}{2} \cdot 1 + \frac{1}{2}(1 + x)$$

$$x = \frac{1}{2} \cdot 1 + \frac{1}{2}(1 + x)$$

$$x = 2 \cdot 1 + \frac{1}{2}(1 + x)$$

$$x = 2 \cdot 1 + \frac{1}{2}(1 + x)$$

$$x = 2 \cdot 1 + \frac{1}{2}(1 + x)$$

$$x = 2 \cdot 1 + \frac{1}{2}(1 + x)$$

$$x = 2 \cdot 1 + \frac{1}{2}(1 + x)$$

$$x = 2 \cdot 1 + \frac{1}{2}(1 + x)$$

$$x = 2 \cdot 1 + \frac{1}{2}(1 + x)$$

$$x = 2 \cdot 1 + \frac{1}{2}(1 + x)$$

$$x = 2 \cdot 1 + \frac{1}{2}(1 + x)$$

$$x = 2 \cdot 1 + \frac{1}{2}(1 + x)$$

$$x = 2 \cdot 1 + \frac{1}{2}(1 + x)$$

$$x = 2 \cdot 1 + \frac{1}{2}(1 + x)$$

$$x = 2 \cdot 1 + \frac{1}{2}(1 + x)$$

$$x = 2 \cdot 1 + \frac{1}{2}(1 + x)$$

$$x = 2 \cdot 1 + \frac{1}{2}(1 + x)$$

$$x = 2 \cdot 1 + \frac{1}{2}(1 + x)$$

$$x = 2 \cdot 1 + \frac{1}{2}(1 + x)$$

$$x = 2 \cdot 1 + \frac{1}{2}(1 + x)$$

$$x = 2 \cdot 1 + \frac{1}{2}(1 + x)$$

$$x = 2 \cdot 1 + \frac{1}{2}(1 + x)$$

$$x = 2 \cdot 1 + \frac{1}{2}(1 + x)$$

$$x = 2 \cdot 1 + \frac{1}{2}(1 + x)$$

$$x = 2 \cdot 1 + \frac{1}{2}(1 + x)$$

$$x = 2 \cdot 1 + \frac{1}{2}(1 + x)$$

$$x = 2 \cdot 1 + \frac{1}{2}(1 + x)$$

$$x = 2 \cdot 1 + \frac{1}{2}(1 + x)$$

$$x = 2 \cdot 1 + \frac{1}{2}(1 + x)$$

$$x = 2 \cdot 1 + \frac{1}{2}(1 + x)$$

$$x = 2 \cdot 1 + \frac{1}{2}(1 + x)$$

$$x = 2 \cdot 1 + \frac{1}{2}(1 + x)$$

$$x = 2 \cdot 1 + \frac{1}{2}(1 + x)$$

$$x = 2 \cdot 1 + \frac{1}{2}(1 + x)$$

$$x = 2 \cdot 1 + \frac{1}{2}(1 + x)$$

$$x = 2 \cdot 1 + \frac{1}{2}(1 + x)$$

$$x = 2 \cdot 1 + \frac{1}{2}(1 + x)$$

$$x = 2 \cdot 1 + \frac{1}{2}(1 + x)$$

$$x = 2 \cdot 1 + \frac{1}{2}(1 + x)$$

$$x = 2 \cdot 1 + \frac{1}{2}(1 + x)$$

$$x = 2 \cdot 1 + \frac{1}{2}(1 + x)$$

$$x = 2 \cdot 1 + \frac{1}{2}(1 + x)$$

$$x = 2 \cdot 1 + \frac{1}{2}(1 + x)$$

$$x = 2 \cdot 1 + \frac{1}{2}(1 + x)$$

$$x = 2 \cdot 1 + \frac{1}{2}(1 + x)$$

$$x = 2 \cdot 1 + \frac{1}{2}(1 + x)$$

$$x = 2 \cdot 1 + \frac{1}{2}(1 + x)$$

$$x = 2 \cdot 1 + \frac{1}{2}(1 + x)$$

$$x = 2 \cdot 1 + \frac{1}{2}(1 + x)$$

$$x = 2 \cdot 1 + \frac{1}{2}(1 + x)$$

$$x = 2 \cdot 1 + \frac{1}{2}(1 + x)$$

$$x = 2 \cdot 1 + \frac{1}{2}(1 + x)$$

$$x = 2 \cdot 1 + \frac{1}{2}(1 + x)$$

$$x = 2 \cdot 1 + \frac{1}{2}(1 + x)$$

$$x = 2 \cdot 1 + \frac{1}{2}(1 + x)$$

$$x = 2 \cdot 1 + \frac{1}{2}(1 + x)$$

$$x = 2 \cdot 1 + \frac{1}{2}(1 + x)$$

$$x = 2 \cdot 1 + \frac{1}{2}(1 + x)$$

$$x = 2 \cdot 1 + \frac{1}{2}(1 + x)$$

$$x = 2 \cdot 1 + \frac{1}{2}(1 + x)$$

$$x = 2 \cdot 1 + \frac{1}{2}(1 + x)$$

$$x = 2$$

Quick sort

- Pick a random element of A as the "pivot" > A(i) B: all elements of A & A[i].

 C: all elts of A > A[i].
- Partition A into sub-arrays *B* and *C*
- Recursively sort *B*, *C*, and concatenate answers

How long can it take?

• If so, with what probability?

$$T(n) = T(n-1) + n$$

$$T(n-2) + (n-1) + n$$

$$\sum_{i=1}^{n} (n-2) + (n-1) + n$$

What is the expected running time?

Good and bad pivots

$$T(n) = T(\frac{n}{2}) + T(\frac{n}{2}) + n \frac{n}{3} \frac{2n}{3}.$$

$$(exactly the same as merge sort) \rightarrow good$$

$$(...nlog n)$$

$$T(n) = T(\frac{n}{3}) + T(\frac{2n}{3}) + n$$

• <u>Key observation</u>: it suffices to encounter log *n* "good pivots"

Expected running time 27/3

Running time = X

T: event that pivot is a between $\frac{n}{3}$ between $\frac{n}{3}$ of $\frac{2n}{3}$

smallert elements

Formula for
$$f(n) = \frac{1}{3} \cdot \left[f(\frac{2n}{3}) + f(\frac{n}{3}) \right] + \frac{2}{3} \cdot f(n-1)$$
Conditional exp. $f(\frac{n}{2}) + f(\frac{n}{2})$

$$f(n) = \frac{1}{3} \left[f\left(\frac{2n}{3}\right) + f\left(\frac{n}{3}\right) \right] + \frac{2}{3} \cdot f(n) + n$$

$$f(n) = f(\frac{2n}{3}) + f(\frac{n}{3}) + 3n$$

$$f(n) \leq C \cdot n \log n \cdot Akra-Bazzi / Guess-n-prove.$$

Recurrence for expected time

$$\mathbb{E}\left[X\right] = \Pr\left(\frac{\text{pivot is}}{\text{smallest}}\right) \cdot \mathbb{E}\left[X \mid \frac{\text{pivot is}}{\text{smallest}}\right] + \Pr\left(\frac{\text{pivot is}}{\text{smallest}}\right) \cdot \mathbb{E}\left[X \mid \frac{1}{\text{pivot is}}\right] + \Pr\left(\frac{1}{\text{pivot is}}\right) \cdot \mathbb{E}\left[X \mid \frac{1}{\text{pivot is}}\right] + \cdots \right] + \Pr\left(\frac{1}{\text{pivot is}}\right) + \left(\frac{1}{\text{pivot is}}\right) + \left(\frac{1}{\text{pivot is}}\right) + \left(\frac{1}{\text{pivot is}}\right) + \cdots \right) + \Pr\left(\frac{1}{\text{pivot is}}\right) + \cdots \right) + \Pr\left(\frac{1}{\text{pivot is}}\right) + \Pr\left(\frac{1}{\text{piv$$

Solving the recurrence

```
Have shown: in expectation, quick-sort on array of length = n takes time \( \left( \frac{4}{n} \right) \sign \)
```

From expectation to guarantee

Markov's inequality: let X be a <u>non-negative</u> random variable with expectation C. Then prob[X > tC] <= 1/t.

- Implication for quick sort?
- "Boosting probability"

Amplification by repetition