Advanced Algorithms

Lecture 14: Randomness in algorithm design

Announcements

- Mid-term grades out (Midterm solutions)
- WW 3 due Wednesday (tomorrow)

$$
\left[\begin{array}{c}
\text { please note mild change in } \\
\text { last problem. }
\end{array}\right]
$$

Last two weeks

- Basic graph algorithms
- Dijkstra's algorithm $(\mathrm{O}(\mathrm{m}+\mathrm{n}) \log \mathrm{n})$ time - imitation of BFS
- DP based, "Bellman-Ford" algorithm - O(n (m+n)) time
- "Definitions" of flows and cuts in graphs

Maximum flow

communication networks, shipping goods, ...
Problem: given a (directed) graph $G=(V, E)$ with edge capacities (> 0), source u, sink v, find the max possible "rate" at which one can send "information" from u to v.

Min cut problem

Problem: given a (directed) graph $G=(\mathrm{V}, \mathrm{E})$ with edge costs (>0), source u, sink v, find the min possible set of edges to "cut" so that there's no path from $u->v$

Blowing bridges...

- Undirected graphs
- Image segmentation

Flows and cuts

Theorem (easy): $G=(V, E)$ be a weighted directed graph, and u, v be vertices. Let "F" be any flow, interpreting wts as capacities. Let "C" be any cut, interpreting wts as costs. Then $\mathrm{F}<=\mathrm{C}$.

Comments

- Max-flow min-cut theorem
- Many applications - e.g., no bottleneck => many edge disjoint paths
- Algorithms for cut == algorithms for flow

Today

Can randomness help in algorithm design?

Toy problem

Problem: given an (unsorted) array $A[0], A[1], \ldots, A[n-1]$, and the promise that at least $n / 3$ of the $A[i]$ are 0 , find one index i s.t. $A[i]=0$

- Generalization of HW problem

$$
\text { - Simpleidea: if we pick an } i \text { at random, }
$$

$$
\text { then } \operatorname{Pr}[A[i]=0] \geqslant 1 / 3
$$

Randomized procedure
$\left\{\begin{array}{lll}\text { Pick } r \text { random indices } i_{1}, i_{2}, \ldots, & i_{r} \\ \text { if any of } A\left[i_{t}\right]=0, & \text { output } & i_{t} \\ \text { else FAlL. }\end{array}\right\}$ rum time $=r$.
Prob. of failure? $\quad\left(\frac{2}{3}\right)^{r} \quad\left\{\begin{array}{l}\text { for } \text { each index, there is } \\ \text { a prob-of } \frac{2}{3}, \text { these }\end{array}\right.$ for $\frac{1}{1000}$, just need $r \approx 20$.
(decays exponentially).

Key trade-off

- Higher running time, higher probability of success
- Note: don't even read entire input!

$$
\left[\begin{array}{c}
\text { sampling alfos work for } a \\
\text { similar reason }
\end{array}\right]
$$

"Las Vegas" algorithm

$$
\begin{aligned}
& \text { (never fail, but can } \\
& \text { potentially run }
\end{aligned}
$$

- While not found: pick random index i and check if $\mathrm{A}[\mathrm{i}]=\mathrm{O}$
(similar to tossing until seeing heads) Running time is a random variable

Example 2 - checking identities

$$
\left.\begin{array}{rl}
& \left(x-a_{1}\right)\left(2 x-a_{2}\right) \cdots \quad(\text { checking circuits }) . \\
\left(x-a_{d}\right)
\end{array}\right) .
$$

On: is $p(x)=q(x)$?

- What if we simply plug in a random integer x in interval $\widetilde{[1,20]}$?
and check $f \quad p(x)=q(x)$ for this integer.

$$
\begin{aligned}
& p(x)=\left(c_{1} x-a_{1}\right)\left(c_{2} x-a_{2}\right) \cdots\left(c_{d} x-a_{d}\right) \\
& q(x)=b_{0}+b_{1} x+b_{2} x^{2}+\cdots+b_{d} x^{d} .
\end{aligned}
$$

\# of terms in the "expansion" of $p(x) \equiv 2^{d}$.
what is

$$
p(1) ? \curvearrowleft \text { poly }(d)
$$

same for $q(1)$.

One variable identities
Issue: we can have $p(a)=q(a)$ without having

$$
\begin{gathered}
p(x) \equiv q(x) \\
\gamma(x) \equiv p(x)-q(x) \rightarrow \begin{array}{l}
\text { any a st. } p(a)=q(a) \text { is } \\
\psi \\
r \text { is also a polynomial }
\end{array} \quad \text { robt of } r(x)
\end{gathered}
$$

$$
(\text { degree } \leq d)
$$

there are at most d values of "a" st. $p(a)=q(a)$.

Algorithm: pick an interval with $2 d$ integers.
$\rightarrow I$

$$
" a "
$$

- pick a random integer afrom I and check if $p(a)=q(a)$.

Example 3 - primality
 10513

Problem: given an integer $X=a_{1} a_{2} \ldots a_{n}$, find if X is prime

- Classic problem in math/CS $\quad \sqrt{x} \approx 10^{n / 2}$
- Can an algorithm run in time poly(n)?

$$
x \text { has no }
$$

divisors other than 1 and

- Miller-Rabin test (link on course webpage). itself

$$
\gamma \in[1, \ldots, x],
$$

Example 4 - perfect matching
Canonical application of max foo.

Problem: given a bipartite graph G, find if it has a "perfect matching"

- Claim: this reduces to identity testing!

Obsn: $\operatorname{det}(M)$ is a polynomial in variables $X_{1 A}, X_{2 A} \ldots, \cdots \quad \begin{array}{ll}3 & \rightarrow B \\ 4 & \rightarrow C .\end{array}$

$$
\begin{aligned}
& \cdot A=\left[\begin{array}{cccc}
a_{11} & a_{12} & \ldots & a_{1 n} \\
a_{21} & a_{22} & \ddots & a_{2 n} \\
a_{n 1} & a_{n 2} & \ldots & a_{n n}
\end{array}\right]
\end{aligned}
$$

Perfect matching
Claim: if G has no perfect matching, then determinant of $M(\operatorname{det}(M))$ is $\equiv 0 *$ y G does have a perfect matching, $\operatorname{det}(M) \not \equiv 0$.
Proof: Suppose there was a perfect matching; then the corresponding term in the expansion of the determinant is non-zero.

Examples so far

- Finding hay in a hay stack
- Trade-off between running time and success probability
- (Fairly general) - "boosting"

Randomized algorithms overview

- Data is given, algorithm is randomized (unlike sampling/"ML" analyses)
- Usually concerned about expected behavior, behavior "with high probability"

Next few lectures: general ideas, applications, analysis...

