Advanced Algorithms

Lecture 14: Randomness in algorithm design



Announcements
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e Mid-term grades out
term grades ¢

¢ HW 3 due Wednesday (tomorrow)



| ast two weeks

e Basic graph algorithms
e Dijkstra’s algorithm (O(m+n) log n) time — imitation of BFS
e DP based, “Bellman-Ford” algorithm — O(n (m+n)) time

e “Definitions” of flows and cuts in graphs



Maximum flow

communication networks, shipping goods, ...

Problem: given a (directed) graph G = (V, E) with edge capacities ( >
0), source u, sink v, find the max possible “rate” at which one can send
“Information” from u to v.

12 Source: 0
Sink: 5




Min cut problem

Problem: given a (directed) graph G = (V, E) with edge costs ( > 0),

source u, sink v, find the min possible set of edges to “cut” so that
there’s no path fromu —> v

Blowing bridges...
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Flows and cuts

Theorem (easy): G = (V, E) be a weighted directed graph, and u, v be

vertices. Let “F” be any flow, interpreting wts as capacities. Let “C” be
any cut, interpreting wts as costs. Then F <= C.




Comments

e Max-flow min-cut theorem

e Many applications — e.g., no bottleneck => many edge disjoint
paths

e Algorithms for cut == algorithms for flow
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Today

Can randomness help in algorithm design?



Toy problem
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Randomized procedure
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Key trade-oft

e Higher running time, higher probability of success

e Note: don’t even read entire input!




"Las Vegas” algorithm

e While not found: pick random index 1 and check if A[i]=0 M{?M% '

(similar to tossing until seeing heads)

Running time is a random variable
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Expected Running Time




Example 2 — checking identities
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e What if we simply plug in a random integer x in interval [1,20]?
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One variable identities
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General theorem: Schwartz-Zipfel Lemma
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Example 3 — primality

o (Classic problem in math/CS \& = |0
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Example 4 — perfect matching
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Problem: given a bipartite graph G, find if it has a “perfect matching”







Perfect matching




Examples so far

¢ Finding hay in a hay stack
e Trade-off between running time and success probability

o (Fairly general) — “boosting”



Randomized algorithms
overview

e Data is given, algorithm is randomized (unlike sampling/“ML”
analyses)

e Usually concerned about expected behavior, behavior “with high
probability”

Next few lectures: general ideas, applications, analysis...




