Advanced Algorithms

Lecture 13: Flows, cuts, review

Announcements

- Midterm on Thursday (in class)
- HO 2 grades out - direct-message TA + instructor on Piazza
- HO 3 due Wednesday after the fall break
(or write to Vines)

Last week

- Shortest path in graphs (see notes)
- Dijkstra's algorithm $(\mathrm{O}(\mathrm{m}+\mathrm{n}) \log \mathrm{n})$ time - imitation of BFS
- DP based, "Bellman-Ford" algorithm - O(n (m+n)) time
- If there are short paths, can be quite good

Plan for today

- Two problems: "flows" and cuts
- Connections
- Mid-term review

Maximum flow

communication networks, shipping goods, ...
Problem: given a (directed) graph $G=(V, E)$ with edge capacities (> 0), source u, sink v, find the max possible "rate" at which one can send "information" from u to v.

Two definitions of flow
equivalent formulations
of flow

- Set of paths, each carrying some flow; constraint: on every eden, total
- Flow values on edges
views a flow as a fir from $E \rightarrow \mathbb{R}_{\geqslant 0}$. for every $e \in E$, we have a value f_{e}.
 flow on that edge
(summed over paths using that edge) is $\leq \operatorname{capacity}(e)$ $w \neq u, v$, total flow into $w=$ total flow out of w.

$$
f_{e_{1}}+f_{e_{2}}=f_{e_{3}}+f_{e_{4}}
$$

Greedy procedure
$10+10+10=30$ units of flow.

* Algorithm always finds a feasible flow.
\rightarrow Find shortest path from $u \rightarrow v$, send as much flow as possible
V. Update capacities on edges (i.e., keep only "remaining" capacity)
- Repeat.

Issues

- Depends on path chosen!

Need to "push back" flow, correct "mistakes" - Ford Fulkerson algorithm...

Min cut problem
A cut is a set of edges.
Problem: given a (directed) graph $G=(V, E)$ with edge costs (>0), source u, sink v, find the min possible set of edges to "cut" so that there's no path from $u \overrightarrow{->v}$
min total cost.
Blowing bridges...

- Undirected graphs
- Image segmentation

Minimum cut

$$
\text { min-ut value }=30 \text {. }
$$

Flows and cuts

Theorem (easy): $G=(V, E)$ be a weighted directed graph, and u, v be vertices. Let " F " be any flow, interpreting wis as capacities. Let " C " be any cut, interpreting wis as costs. Then $\mathrm{F}<=\mathrm{C}$

Claim: $\quad f \leqslant C$
F : value of some flow from
C : value of some ut (ie., sum of cost of a set of edges that disconnects v from u.)

Flow $<=$ cut
Example: think of all edge wits as 1 .

$$
\text { Any flow } \equiv \text { collection of edge- }
$$ disjoint paths.

Cut इ some set of edges whose removal disconnects v from u.

Any path must have at least one of
 the cut edges. \Rightarrow \#paths $\leq \#^{t}$ of cut edges.

Proof of Ford-Fulkerson
\rightarrow Value of ANY flow \cong Value of ANY out.

Value of max flow \leqq Value of min cut.

Proof of FF: exhibits a cut whose value is equal to (Correctness) the value of the flow produced.

Comments

- Max-flow min-cut theorem (FF-Thorem). $\begin{aligned} & \text { in any graph, max flow = } \\ & \text { min aut. })\end{aligned}$
- Many applications - e.g., no bottleneck => many edge disjoint paths
- Algorithms for cut == algorithms for flow

Review

- Divide and conquer / recursion - inductive analysis, recurrences
- Dynamic programming (store answers to sub-problems)
- Greedy algorithms (easy to design + implement, often hard to reason), local search
- Basics of graphs
- Using randomness in algorithm design
- Optimization and linear programming

