
Advanced Algorithms
Lecture 13: Flows, cuts, review



Announcements

• Mid-term on Thursday (in class) 

• HW 2 grades out — direct-message TAs + instructor on Piazza 

• HW 3 due Wednesday after the fall break

-

-

-

( or write to Vivek ) .



Last week

• Shortest path in graphs (see notes) 

• Dijkstra’s algorithm (O(m+n) log n) time — imitation of BFS 

• DP based, “Bellman-Ford” algorithm — O(n (m+n)) time 

• If there are short paths, can be quite good



Plan for today

• Two problems: “flows” and cuts 

• Connections 

• Mid-term review



Maximum flow

Problem:  given a (directed) graph G = (V, E) with edge capacities ( > 
0), source u, sink v, find the max possible “rate” at which one can send 

“information” from u to v.

communication networks, shipping goods, …

:



Two definitions of flow

• Set of paths 

• Flow values on edges
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Greedy procedure
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Issues

• Depends on path chosen!
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Min cut problem

Problem:  given a (directed) graph G = (V, E) with edge costs ( > 0), 
source u, sink v, find the min possible set of edges to “cut” so that 

there’s no path from u —> v

Blowing bridges…

• Undirected graphs 

• Image segmentation

A cut is a setofedges .
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Minimum cut
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Flows and cuts

Theorem (easy):  G = (V, E) be a weighted directed graph, and u, v be 
vertices. Let “F” be any flow, interpreting wts as capacities. Let “C” be 

any cut, interpreting wts as costs. Then F <= C.
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Flow <= cut
Example; think of all edge its as I .
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Proof of Ford-Fulkerson

→ Value of  ANI flow € Value of ANI
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Comments

• Max-flow min-cut theorem 

• Many applications — e.g., no bottleneck => many edge disjoint 
paths 

• Algorithms for cut == algorithms for flow
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Review
• Divide and conquer / recursion — inductive analysis, recurrences  

• Dynamic programming (store answers to sub-problems) 

• Greedy algorithms (easy to design + implement, often hard to 
reason), local search 

• Basics of graphs 

• Using randomness in algorithm design 

• Optimization and linear programming
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