Advanced Algorithms

Lecture 14: Randomness in algorithm design

Announcements

- Mid-term grades out
- HW 3 due Wednesday (tomorrow)

Last two weeks

- Basic graph algorithms
- Dijkstra's algorithm $(\mathrm{O}(\mathrm{m}+\mathrm{n}) \log \mathrm{n})$ time - imitation of BFS
- DP based, "Bellman-Ford" algorithm - O(n (m+n)) time
- "Definitions" of flows and cuts in graphs

Maximum flow

communication networks, shipping goods, ...
Problem: given a (directed) graph $G=(V, E)$ with edge capacities (> 0), source u, sink v, find the max possible "rate" at which one can send "information" from u to v.

Min cut problem

Problem: given a (directed) graph $G=(\mathrm{V}, \mathrm{E})$ with edge costs (>0), source u, sink v, find the min possible set of edges to "cut" so that there's no path from $u \rightarrow>v$

Blowing bridges...

- Undirected graphs
- Image segmentation

Flows and cuts

Theorem (easy): $G=(V, E)$ be a weighted directed graph, and u, v be vertices. Let "F" be any flow, interpreting wts as capacities. Let "C" be any cut, interpreting wts as costs. Then $\mathrm{F}<=\mathrm{C}$.

Comments

- Max-flow min-cut theorem
- Many applications - e.g., no bottleneck => many edge disjoint paths
- Algorithms for cut == algorithms for flow

Today

Can randomness help in algorithm design?

Toy problem

Problem: given an (unsorted) array A[0], A[1], ..., A[n-1], and the promise that at least $n / 3$ of the $A[i]$ are 0 , find one index i s.t. $A[i]=0$

- Generalization of HW problem

Randomized procedure

Key trade-off

- Higher running time, higher probability of success
- Note: don't even read entire input!

"Las Vegas" algorithm

- While not found: pick random index i and check if $\mathrm{A}[\mathrm{i}]=\mathrm{o}$

Expected Running Time
(similar to tossing until seeing heads) Running time is a random variable

Example 2 - checking identities

$$
\begin{aligned}
p(x) & =(x-7)(x-3)(x-1)(x+2)(2 x+5) \\
q(x) & =2 x^{5}-13 x^{4}-21 x^{3}+127 x^{2}+121 x-210
\end{aligned}
$$

- What if we simply plug in a random integer x in interval $[1,20]$?

One variable identities

Example 3 - primality

Problem: given an integer $X=a_{1} a_{2} \ldots a_{n}$, find if X is prime

- Classic problem in math/CS
- Can an algorithm run in time poly(n)?
- Miller-Rabin test

Example 4 - perfect matching

Problem: given a bipartite graph G, find if it has a "perfect matching"

- Claim: this reduces to identity testing!

Perfect matching

Examples so far

- Finding hay in a hay stack
- Trade-off between running time and success probability
- (Fairly general) - "boosting"

Randomized algorithms overview

- Data is given, algorithm is randomized (unlike sampling/"ML" analyses)
- Usually concerned about expected behavior, behavior "with high probability"

Next few lectures: general ideas, applications, analysis...

