
Lecture 10: Local search  

Plan/outline  

We completed the analysis of Prim's algorithm for MST (see the notes for the previous lecture). Then, we
started looking at local search algorithms.

Local search  

Suppose we have a constrained optimization problem in which we have no real idea of how to proceed. One
naive solution is to start with any feasible solution, and try to "perturb it" slightly, so as to improve the objective
value, while maintaining feasibility. How we define a perturbation depends on the problem at hand.

It is natural to ask if/when local search is optimum. After all, since the objective value monotonically improves,
we are guaranteed that the algorithm converges to some solution (assuming the feasible space is
"compact"/bounded/finite).

One of the most popular applications of local search is multi-variate optimization. Suppose we have a real
valued function , and given a domain , we wish to find .

Then, we can start with some feasible point , and look in a small enough ball around  (suppose the ball has
radius , and denote it by , and move to a point  such that . At first sight, it
is not clear how to find such a . But by standard calculus, assuming  is differentiable at , we know that for
small enough  and some vector , we have . Thus if we set  to be the unit
vector in the direction of , then up to a second order correction, the value of  drops (i.e., becomes 

).

This general idea is known as gradient descent and it is perhaps the most ubiquitous algorithm in modern
machine learning. Note that there are many logistical issues here: what if going along  takes us out of ?
How should we choose the "step size" , and so on. This leads us into the rabbit hole of optimization, which we
do not propose to get into in this course.

Zooming out slightly, we still have not answered the question of when local search is optimal. From the above
reasoning, we obtain that gradient descent always converges to a locally optimum solution (i.e., a solution in
which  is the best point in ). Does this mean that there are no points with a smaller optimum value?

In general, there can be multiple local optima that are considerably worse than global optima (in fact, one can
even consider polynomial minimization on the real line to see examples), e.g., consider the function 

. The plot looks as follows:



We have a local minimum at , where the function value is considerably larger than the global minimum
(at .

Convex optimization. That said, there is an important sub-class of optimization problems for which any local
minimum is also the global minimum. This is the class of convex optimization problems, defined as the problem
of minimizing a "convex function" over a "convex domain" .

Let us define the terms in parentheses. For univariate functions, convexity is often defined via the second
derivative. However, there is a much nicer definition which does not even assume the differentiability of 
everywhere. We say that a function  is convex if for all  and for every , we have 

For intuition, if we set , this is saying that . The definition is clearly well
defined for multi-variate functions as well. The only issue can be that  but . This is
ruled out by the assumption that  is a convex set. Indeed, a convex set is precisely a set  such that for all 

, the point  for all .

Local and global minima of a convex function. Why is every local minimum a global minimum in convex
optimization? Let us prove it by assuming the contradiction. Let  be a local minimum -- i.e.,

(++) for some , we have that  for all .

Furthermore, suppose that  is the global minimum, and that  (strictly smaller value). Now, if 
, this is clearly a contradiction to (++). Otherwise, consider moving from  to  along the straight

line, and consider the first time we exit the ball . This point, like all points on the segment , can be
expressed as , for some . By convexity, we have 

Thus we have demonstrated a point in  whose  value is strictly smaller than  -- this contradicts
(++), and completes the proof.

Matching problem -- a combinatorial example  

Let us now illustrate local search in a context of the so-called "matching" problem (in which the optimization is
over a discrete set).



Matching problem. Suppose we have  children and  gifts. Child  has a happiness value  if he/she is
given gift , and suppose the  values are all given (and are ).The goal is to come up with an assignment of
the gifts to children (each child must get precisely one gift), so as to maximize the total happiness. If child  is
given gift , then the objective is to maximize .

The brute force solution of checking all possibilities takes time , because every assignment  (as above) is a
permutation, and there are  permutations.

Greedy algorithm. Another natural procedure is the greedy algorithm: consider the children in some order, say 
. To child , we give the gift with the largest  value that is still available. This procedure can, in

general, be really bad. Suppose we have  and we have the values . In
this case, starting with child  is really bad, because we end up assigning gift 2 to child 1, thereby getting a total
happiness value of only  (while the optimum is ).

However, in this case, we can see easily that swapping the gifts really improves the solution. This suggests the
following local search procedure.

Local search. Start with any feasible assignment. Go over all pairs  of children, and see if swapping the gifts
results in a higher value of the total happiness. If so, perform the swap, and repeat.

Running time. In principle, this algorithm can take a really long time. The running time is  (number of
times we repeat the process). The latter is not easy to bound, but it is always , because the cost of solution
strictly improves, and there are only  solutions. But let us not worry too much about the running time for
now.

Does the algorithm always find an optimal solution? It turns out that the answer is NO. Consider the
following instance, with .

Suppose the black edges have weight  and the blue edges are weight . Suppose any non-edges (say between
child 2 on the left and gift  on the right) are of weight . Then, it is easy to see that the set of black edges form
a locally optimal solution. There is no single swap that improves the value of the solution, however the
objective value of the solution is , while the optimum happines is  (obtained by picking the blue edges).

Interestingly, we can prove that this is essentially the worst possible gap.

Theorem. Let  be any locally optimal assignment, and let  be the optimal solution (i.e., the best assignment
to child  is ). Then the total happiness value of the assignment  is at least  the total happiness of .

Proof. The intuitive idea behind the proof is the following. Suppose we have some  that is really large (as in
the example in which greedy fails). Then in the assignment , there must be two children the sum of whose
happiness values is . To see this, suppose  is the index such that  (in other words, ). If 

, there is nothing to prove, since child  has happiness value . Otherwise, we claim that 
. This is because otherwise, we can swap the gifts, and get a value of . (As

all the happiness values are non-negative.)

The argument above says that the optimum solution does not "badly miss" any high-weight edges. We use this
idea to now complete the proof.

For any edge  in the optimal solution, we must have 



Now, suppose we sum this quantity over all . We get

The first term on the LHS is the total happiness value of the solution , and the RHS is the total happiness
value of the solution . Now, what is the second term on the LHS? As  goes over ,  also goes over 

 (it is a permutation). Thus we can re-write it as . But this is precisely the same as 
, and thus the LHS is simply .

Dividing by 2, we obtain the theorem.

Comparing with the continuous problems. When we defined local search for continuous optimization
problems, we considered a ball of a certain radius around the given points. In the discrete problem above, the
"ball" around one solution  can be viewed as the set of all permutations that can be obtained by swapping two
elements of .

In fact, by considering all possible re-assignments of triples of vertices, one can prove a theorem similar to the
above, but with a better constant --- 2/3 instead of 1/2. Intuitively, this corresponds to searching in a "larger
ball" around the given solution . The search now takes longer ---  instead of , but we have a better
guarantee on the solution obtained.

Comments on the matching problem. While local search methods give a reasonable solution for the
matching problem, it turns out that there are other techniques that give polynomial time algorithms that find
the optimal matching. One classic algorithm here, known as the "four Hungarians" procedure, turns out to be
simple and optimal. It's related to algorithms for max flow, that we study briefly in the course.
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