
Advanced Algorithms
Lecture 12: Shortest paths (contd.)



Announcements

• HW 3 is out 

• Mid-term exam  (read HW 3!)

( Wednesday after fall break ) .

( 10:45 - noon ) -



Problem
Problem:  given a (directed) graph G = (V, E) with edge lengths ( > 0), 

find shortest length path from u to v.

• Observation: can do O(m+n) time if graph is unweighted  (BFS) 

• Can we create regions of “growing radius” around u?

Dijkstra 's algorithm
-



Construct ball of radius ‘r’?

r = 4

What is the closest vertex (to u) outside the ball? 
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Dijkstra’s algorithm

• Maintain “distance” array (will slowly get populated)  

• Start with S = {u}, radius = 0, set dist(u) = 0 

• For all {ij} where i is in S and j is outside: 

• candidate_dist(j) = dist(i) + length(ij) 

• Pick the ‘j’ with the smallest candidate_dist(), add it to S, set dist(j)
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Correctness

• Claim 1: every time we set the “dist” value of a vertex w, it is the 
minimum distance from u to w. 

• Claim 2: all vertices reachable from u will eventually have dist value 
set
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Inductive-

ep : Assume that dist values are correct

for the first
'

t
'

iterations ( t > o ) .
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is the true shortest path
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- Proof by contradiction ; suppose
there was some other

( shorter ) path
to Vz+ ,

.
That path must have exited

S at some pt . If u - y .
 - n - u* ,

was shorter

than path we found ,
then u - v ;

 - n is also shorter than

path we found to Vtt ,



-
This contradicts the choice of Vt ,

Claim
⇒ if u is reachable from u ,

then u is eventually

included in S .
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Running time
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Imp¥Hm :

- for every
at V

,

maintain the best ( i.e
.

shortest candidate path so far ) .

-

when we
add a new

vertex Vtt , ,

then :

- for a outside S
,

check if u
→ Vt + The

{
is •better than current candidate

path .

- if yess ,
update the candidate path .

[ The algorithm can actually
be implemented

in

O ( C min ) login) time
.



Deja vu — Prim’s algorithm
( MST

'

algorithm ) .



Comparisons

• Dynamic programming (Bellman-Ford / Shimbel’s algorithm) — 
O(n(m+n)) time 

• Much nicer in some settings … 
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Alternate view: Bellman-Ford

• Maintain dist(v) — array initialized to INF, dist(u) = 0 

• For t = 1, 2, …, n: 

• for every vertex “w”:  
             set new_dist(w) = minneighbors x {dist(x) + length(xw)} 

• dist(w) = min(dist(w), new_dist(w))

Simple, “parallel” algorithm… 

Also faster in “small world” graphs
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All pairs shortest paths
-

- Given a graph §, goal
is to output an n×n

n m
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is the length of the

shortest path from i - sj .
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Bellman - Ford idea :

-
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→ Can be viewed as Matrix Multiplication

with
"

appropriate operators
"

.



Matrix multiplication



Approximate shortest paths

• Reducing number of edges — spanners


