Advanced Algorithms

Lecture 12: Shortest paths (contd.)

Announcements

- HW 3 is out (Wednesday after fall break).
- Mid-term exam (read HW 3!)

$$
(10: 45-\text { noon })
$$

Problem

Problem: given a (directed) graph $G=(V, E)$ with edge lengths (>0), find shortest length path from u to v.

Dijkstra's algorithm

- Observation: can do $\mathrm{O}(\mathrm{m}+\mathrm{n})$ time if graph is unweighted (BFS)
- Can we create regions of "growing radius" around u ?

Construct ball of radius 'r'?

What is the closest vertex (to u) outside the ball?

$r=4$

- Consider all edges rgoing ont from
$-\operatorname{dist}(u \rightarrow i)+\operatorname{length}(i j)$
- Prick j that has the smallest value for this qty

Dijkstra's algorithm

- Maintain "distance" array (will slowly get populated)
\rightarrow - Start with $S=\{u\}$, radius $=0$, set $\operatorname{dist}(u)=0$
the $\$ 0$ until For all $\{\mathrm{ij}\}$ where i is in S and j is outside:
- candidate_dist $(\mathrm{j})=\operatorname{dist}(\mathrm{i})+$ length (jj)
- Pick the ' j ' with the smallest candidate_dist(), add it to S , set dist(j)

Correctness

- Claim 1: every time we set the "dist" value of a vertex w, it is the minimum distance from u to w.
- Claim 2: all vertices reachable from u will eventually have dist value set
(by induction on ' t ').
Prove inductively that vertices added in first ' t ' iterations satisfy this property.
$t=0$ is the base case \longrightarrow trivially correct

Inductive step: Assume that dist value are correct for the first ' t ' iterations $(t \geqslant 0)$. Prove for $t+1$.

I.e., dist value assigned by alg to v_{t+1} is the true shortest path length from $u \rightarrow v_{t+1}$

- Proof by contradiction; suppose there was some other (shorter) path to V_{t+1}. That path must have exited S at some pt. If $u \sim v_{i} \sim x \sim v_{t+1}$ was shorter than path we found, then $u \sim \cdot v_{i} \sim x$ is also shorter than path we found to v_{t+1}
- This contradicts the choice of V_{t+1}

Claim i $2 \Leftrightarrow$ if v is reachable from u, then v is eventually included in S.
[If S stopped growing, S must
 have reached v.].

Running time
Implementing as stated:

- each iteration takes time = const. \#edges out of S.

$$
\leqslant m\binom{\# \text { edges in }}{\text { the graph }}
$$

Overall run-time $\leq n \cdot m$.

Improved algorithm:

- for every $x \in V$, maintain the best (i.e. shortest candidate path so for).
- when we add a new vertex V_{t+1}, then:

S - for x outride S, check if $u \rightarrow V_{t+1} \rightarrow x$ is better than current candidate path.

- if yes, update the candidate path.
[The algorithm can actually be implemented in $O((m+n) \log n)$ time

Deja vu - Prim's algorithm
(MST'algorithn)

Comparisons

$$
O((m+n) \log n)
$$

- Dynamic programming (Bellman-Ford / Shimbel's algorithm) $\mathrm{O}(\mathrm{n}(\mathrm{m}+\mathrm{n})$) time
- Much nicer in some settings ...
always had "start" u.

$$
\begin{aligned}
& \operatorname{dist}(\omega, L) \\
& \operatorname{dist}(\omega, L+1)=\min _{x: x \rightarrow w \text { is a path }} \frac{\operatorname{dist}(x, L)+\ln (x, \omega)}{}, ~
\end{aligned}
$$

Alternate view: Bellman-Ford

- Maintain $\operatorname{dist}(\mathrm{v})-$ array initialized to $\operatorname{INF}, \operatorname{dist}(\mathrm{u})=0$
- Fort $=1,2, \ldots, n$:
- for every vertex " w ":

$$
\text { set new_dist }(\mathrm{w})=\min _{\text {neighbors } \mathrm{x}}\{\operatorname{dist}(\mathrm{x})+\text { length }(\mathrm{xw})\}
$$

- dist $(w)=$ min(dist(w), new_dist(w))

Simple, "parallel" algorithm...
after t iterations,
Also faster in "small world" graphs we get the best path
with $\leq t$ hops

All pairs shortest paths

- Given a graph G, goal is to output an $n \times n$

$$
\left(V_{1}^{n} \stackrel{m}{m}_{1 \prime}^{m}\right.
$$

matrix whose $(i, j)^{\text {th }}$ entry is the length of the shortest path from $i \rightarrow j$.
Easy:
\rightarrow Do Dijkstra for every pair i, j. $\left(\begin{array}{l}\left.n^{2} \times(m+n) \operatorname{logn}\right) \\ =\end{array}\right.$
Slightly better:
\rightarrow Observe that Dijkstra actually gives shortest paths from u to all other vertices $[n \times(m+n) \log n]$.

Bellman-Ford idea:

$$
\operatorname{dist}[u, v]=\min _{=}\left\{\begin{array}{l}
\min \operatorname{dist}(u, x)+\operatorname{lng}(x, v) \\
x \in \operatorname{rbrhod}(v) \\
\operatorname{dist}(u, v) .
\end{array}\right.
$$

\rightarrow Can be viewed as Matrix multiplication with "appropriate operators".

Matrix multiplication

Approximate shortest paths

- Reducing number of edges - spanners

