
Advanced Algorithms
Lecture 12: Shortest paths (contd.)

Announcements

• HW 3 is out

• Mid-term exam (read HW 3!)

(Wednesday after fall break) .

(10:45 - noon) -

Problem
Problem: given a (directed) graph G = (V, E) with edge lengths (> 0),

find shortest length path from u to v.

• Observation: can do O(m+n) time if graph is unweighted (BFS)

• Can we create regions of “growing radius” around u?

Dijkstra 's algorithm
-

Construct ball of radius ‘r’?

r = 4

What is the closest vertex (to u) outside the ball?
→ -

-

fi , J } .

µ.er
-

considfomanedsesgaigat

' dist I u - sit t length lij)

405 .
i⑧ I.

--400-2&Oy
- Pich j

that has the

Smallest value for this

qty .

Dijkstra’s algorithm

• Maintain “distance” array (will slowly get populated)

• Start with S = {u}, radius = 0, set dist(u) = 0

• For all {ij} where i is in S and j is outside:

• candidate_dist(j) = dist(i) + length(ij)

• Pick the ‘j’ with the smallest candidate_dist(), add it to S, set dist(j)

-

→

do
I until # rea#

-

r

=

T I

break ti
!

=
dist l it + length Ci

, j)
.

arbitrarily .

Correctness

• Claim 1: every time we set the “dist” value of a vertex w, it is the
minimum distance from u to w.

• Claim 2: all vertices reachable from u will eventually have dist value
set

-

.

-

-

- -(
p . . . induct!g'

in

udiiinadded in first 't
'

iterations

satisfy this property .

to is the base case
→ trivially correct

.

Inductive-

ep : Assume that dist values are correct

for the first
'

t
'

iterations (t > o) .

Prone for ttl
.

i
S .

,
-

I . e .

,

dist value assigned by alg

¥ ,

to Vtt ,

is the true shortest path

•

Vil
.

!
- length from U → ¥+1.x

- Proof by contradiction ; suppose
there was some other

(shorter) path
to Vz+ ,

.
That path must have exited

S at some pt . If u - y .
 - n - u* ,

was shorter

than path we found ,
then u - v ;

 - n is also shorter than

path we found to Vtt ,

-
This contradicts the choice of Vt ,

Claim
⇒ if u is reachable from u ,

then u is eventually

included in S .

.

,

(It s stopped growing ,

S must

have reached V .] .

- #

Running time
i. *ma .

-
each iteration takes time = const .

edges oftof

overrun run
. time en .m .

In (# effigy)
.

-

Imp¥Hm :

- for every
at V

,

maintain the best (i.e
.

shortest candidate path so far) .

-

when we
add a new

vertex Vtt , ,

then :

- for a outside S
,

check if u
→ Vt + The

{
is •better than current candidate

path .

- if yess ,
update the candidate path .

[The algorithm can actually
be implemented

in

O (C min) login) time
.

Deja vu — Prim’s algorithm
(MST

'

algorithm) .

Comparisons

• Dynamic programming (Bellman-Ford / Shimbel’s algorithm) —
O(n(m+n)) time

• Much nicer in some settings …

Oflmtn) login) .

-

-

I
always had

distance from u → w using L hops .

"

start
' '

u .

FE
dist (w

,
L) .

:
: distfw.in) =ng'

→ wid; ' D

Alternate view: Bellman-Ford

• Maintain dist(v) — array initialized to INF, dist(u) = 0

• For t = 1, 2, …, n:

• for every vertex “w”:  
 set new_dist(w) = minneighbors x {dist(x) + length(xw)}

• dist(w) = min(dist(w), new_dist(w))

Simple, “parallel” algorithm…

Also faster in “small world” graphs

-

= .

#,
after t iterations

,

we get the
.

best path
with Et hops .

All pairs shortest paths
-

- Given a graph §, goal
is to output an n×n

n m

(v
,
E)

matrix whose (i
, j)

th

entry
is the length of the

shortest path from i - sj .

¥7
"

Do Dijkstra for every fair is j . (

Ix
(mtn) Ign)

Slightybetter:

→ Observe that Dijkstra actually gives
shortest paths from

3
.

:
u

to all other vertices

(n × (mtn) log n)
.

Bellman - Ford idea :

-

dist I IInnwho.dmdistlu.xl-lenglx.ir)

I dist (un) .

→ Can be viewed as Matrix Multiplication

with
"

appropriate operators
"

.

Matrix multiplication

Approximate shortest paths

• Reducing number of edges — spanners

