Advanced Algorithms

Lecture 12: Shortest paths (contd.)

Announcements

- HW 3 is out (Wednesday after fall break).
- Mid-term exam (read HW 3!)

Problem

Problem: given a (directed) graph G = (V, E) with edge lengths (> 0), find shortest length path from u to v.

Dijkstra's algorithm

- Observation: can do O(m+n) time if graph is **unweighted** (BFS)
- Can we create regions of "growing radius" around *u*?

Construct ball of radius 'r'?

What is the closest vertex (to u) outside the ball?

$$r = 4$$

{i,j}. - Consider all edger 190ing out from S - dist (u -> i) + length(ij) - Pick j that has the Smallest value for this

Dijkstra's algorithm

- Maintain "distance" array (will slowly get populated)
- \rightarrow Start with $S = \{u\}$, radius = 0, set dist(u) = 0
- Lo For all {ij} where i is in S and j is outside:
 - candidate_dist(j) = dist(i) + length(ij)
 - Pick the 'j' with the smallest candidate_dist(), add it to S, set dist(j)

break tier = dist(i) + length(i, j).
arbitrarily.

Correctness

- Claim 1: every time we set the "dist" value of a vertex w, it is the minimum distance from u to w.
- Claim 2: all vertices reachable from *u* will eventually have dist value

(by induction on 't').

Prove inductively that vertices added in first 't' iterations

satisfy this property.

t=0 is the base case -> trivially correct.

Assume that dist value are correct Inductive step: 't' iterations (t>0). Prove for t+1. for the first 7.e., dist value assigned by alg to V till is the true shortest path length from u > V+1 - Proof by contradiction; suppose there was some other (shorter) path to V+1. That path must have exited Sout come pt. If um yinx my use shorter than than both we found, then umivina is also shorter than path we found to VtII

- This contradicts the choice of Vt+1

Claim 2 (=> 'y vis reachable from u, then viseventually

cluded in >. [If S stopped growing, S must have reached v.].

Running time as stated:

Implementing

- each iteration takes time = const. Hedger out of

Em (# edges in)
the graph).

Overall run-time 4 m.m.

Improved algorithm: - for every xEV, maintain the best (i.e. shortest candidate path so far). - When we add a new vertex Vtt1, then: S - for a outside S, check if $n \to V_{t+1} \to x$ is a better than current candidate path.

if yes, update the candidate path. The algorithm can actually be implemented in $O((m+n)\log n)$ time

Deja vu – Prim's algorithm

(MST'algorithm).

Comparisons

$$O((m+n)logn)$$

- Dynamic programming (Bellman-Ford / Shimbel's algorithm) O(n(m+n)) time
- Much nicer in some settings ...

always had distance from
$$u \to w$$
 using L hops.

"start" u .

dist (w, L) .

 w dist $(w, L+1) = \min_{x \in x \to w} dist(x, L) + len(x, w)$

Alternate view: Bellman-Ford

- Maintain dist(v) array initialized to INF, dist(u) = o
- For t = 1, 2, ..., n:
 - for every vertex "w":set new_dist(w) = min_{neighbors x} {dist(x) + length(xw)}
 - dist(w) = min(dist(w), new_dist(w))

Simple, "parallel" algorithm...

after t iterations,

Also faster in "small world" graphs

we get the best path

with \(\leq t \) hops.

All pairs shortest paths

- Given a graph G, god is to out put an nxn matrix whose $(i,j)^{th}$ entry is the length of the shortest path from $i \rightarrow j$. Do Dijkstra for every pair i, j. (n² x (m+n)logn) Thy better:

-) Observe that Dijkstra actually gives shortest paths from n3.

1 to all other vertices [nx(m+n) log n].

dist (u,v).

dist (u,v).

Can be viewed as Matrix multiplication with "appropriate operators".

Matrix multiplication

Approximate shortest paths

• Reducing number of edges — spanners