
Lecture 8: Greedy Algorithms  

Plan/outline  

We introduce and study a "new" paradigm -- greedy choice. Imagine a problem in which we need to make a
sequence of decisions. A greedy algorithm is one that makes decisions in a myopic manner: at every step, it
takes the best choice, using some valuation function that only depends on the current state. Further, we assume
that once decisions are made, they are irrevocable.

Greedy algorithms turn out to be easy (and natural) to come up with (perhaps because we're inherently myopic
in decision making). Unfortunately, they are seldom optimal. In spite of this, we will see that there are many
cases in which they still give reasonable insights into the structure of the corresponding problems.

Basic examples  

Traveling salesman problem. One example that we already saw (Lecture 7) is that of the traveling salesman
problem (where a salesman starts at city , needs to visit every other city precisely once and return to the start.
Thus the salesman must make a sequence of decisions of the form "which vertex to visit next?"

The greedy algorithm here is to visit the closest unvisited city (to the current location). We saw that this
procedure is not optimal.

Coin change. Suppose we are given coins of certain denominations, say 1c, 5c, 10c, 20c, 25c, 50c. Let us say that
we need to make change for 75c using the fewest number of coins. The natural greedy algorithm is to start with
the largest denomination less than 75c (in this case it is 50c), remove it and recurse.

It's easy to come up with cases in which this is not optimal. For example, suppose we wish to make change for
40c. The greedy algorithm first picks 25c, then it is forced to pick 10c and 5c. Meanwhile, the optimal solution
(one with the fewest number of coins) is to choose two 20c coins.

We will see more examples in the next couple of lectures.

Scheduling  

Consider the following scheduling problem: we have  jobs that need to be scheduled on a machine. The
processing time of job  i s , which is given as input. The aim is to find the order in which the jobs should be
done, so as to minimize the average completion time.

Suppose we have three jobs with processing times . Then, doing them in the order  yields the
following completion times: job  is completed at time . Job 2 is completed at time . Job  is completed
at time . Thus the total completion time is . The average completion time is this
quantity divided by .



The example already gives a hint of what''s going on. First, instead of minimizing the average completion time,
we can focus on the total completion time. This quantity seems to depend "more strongly" on jobs that are
processed early on.

This gives a hint that we should process the short jobs first. I.e., suppose we think of iteratively deciding which
job to do next, then the greedy choice (one that minimizes the completion time of the next job) is to process the
shortest job. It turns out that the greedy procedure is optimal for this problem! We will see a couple of different
proofs of this.

Proof by direct computation.

The first proof is via a direct computation inspired by the example above. Suppose we decide to perform the 
jobs in the order  where  is a permutation of  (short-form for ). Then the
completion time of the th job is . Thus the total completion time is 

We would like to find a permutation  so as to minimize this quantity. In other words, we have the numbers 
, we need to take one of them, multiply by , take another, multiply by , ..., so that in the

end, the sum of these quantities is minimized. The optimal thus is to pick the smallest of the  to be multiplied
by , the next smallest to be multiplied by , and so on. [Formally, one can show this by arguing that if 

, then swapping them would result in a lower objective value.]

Proof by "structural" argument

In the above argument, we can see that we don't need to find a closed form for the total completion time.
Instead, suppose we just ask: what happens if we swap neighboring jobs in some candidate ordering?

Specifically, consider an ordering in which the job lengths are  (a permutation of , as
before). If we swap , then the completion times of all the jobs before  will be unchanged. So also, the
completion times of all the jobs after  would be unchanged. The completion time of the job corresponding
to  would change from  to , and the completion time of the  job would now be 

. Thus the difference in total completion times is precisely .

Now, if the optimum ordering was optimal, all such quantities must be , or else swapping would result in a
smaller cost. Thus, for the optimal ordering, we have , which implies that the jobs were in increasing
order.

Remark. This argument is "conceptually" the same as the one before, but it doesn't involve first obtaining a
closed form for the solution.

Another proof technique, which is common in greedy algorithms, is to argue inductively that there exists an
optimal solution whose first  jobs are the ones chosen by the greedy algorithm. In essense, this argument is
saying that the first  choices are ``correct''. We will see this argument in the case of the Minimum Spanning
Tree problem.

Set cover -- hiring to cover all skills  



Consider the following hiring problem. Suppose we have a company in which we require expertise in 
different areas, i.e., we have a set of  skills, and we require at least one employee who has skill , for all 

. Now, presented a set of candidates, each of whom has a subset of the  skills, the goal is to pick the
fewest number, so as to "cover" all the skills.

Formally, we are given  that are subsets of , and the goal is to pick some of them, say the
indices , such that  is as small as possible, and 

Greedy algorithm. Let us imagine selecting one set at a time (i.e., hire employees one at a time). In each step,
the natural strategy is to hire the one who brings most to the table, i.e., covers the maximum number of skills
that are uncovered so far (breaking ties arbitrarily).

Is this always optimal? It is fairly easy to see that the procedure isn't always optimal. For example, consider the
figure below. The vertices on the left represent people, and the ones on the right represent skills. Vertex  on the
left is connected to  on the right if person  possesses skill .

The greedy algorithm picks vertices 1, 2, 3 (because at the start, person  posseses the most skills), and once we
chose this person, we are forced to pick 2, 3. The optimal solution, of course, is to pick only  and .

But in the set cover problem, the greedy algorithm posseses a rather nice feature: even though the solution
obtained is not the optimal one, it is not too far from the optimum. Specifically, the following is a theorem one
can prove:

Theorem (approximation ratio). Consider some instance of the set cover problem, and suppose that the
optimum solution consists of  sets (people). Then the greedy algorithm picks no more that  people. (As
is standard,  refers to the natural logarithm of .)

Remark. A statement like this is often referred to as an approximation guarantee. We are relating the value of
the solution obtained by the algorithm to the optimal solution. The non-trivial thing is that the algorithm itself
has no idea what the optimum solution is/looks like.

Proof. We must argue that if there is a small optimum solution, the greedy procedure also picks a reasonably
small solution. Intuitively, we chose the greedy algorithm because it seems to make the most amount of progress
in the current step. Can we quantify this?



Consider running  iterations of the algorithm. Let  denote the set of uncovered skills at that point, and for
convenience, denote . Now, the greedy algorithm in teration  selects the person who has the
most skills in  (breaking ties arbitrarily). Can we argue that there is some person who covers a "good fraction"
of ?

We claim that there is a person who covers  of these skills, or in other words:

Claim. 

Consider any . The greedy algorithm at iteration  chooses the person  such that  is
maximized (recall that  is the skill set of person ). We thus need to argue that there exists a  such that 

.

To prove this, consider the optimal solution, say it is .

We know that . I.e., together the sets  cover all of . So in particular, they must
also cover all of . In other words, we have that 

This implies that there must exist some  such that , since if the union of  sets is , then
one of them must have size at least . This proves that there exists some set  such that ,
which proves the claim.

Next, we see how the claim proves the theorem. We can write it as , which when applied
repeatedly yields , for all .

By definition,  (initially all the elements are uncovered). Thus we have . Suppose we
can make the quantity on the RHS <1, then since  is always an integer, it must be zero! So the question is: for
what  does  become ?

There are many ways to see this. One is to solve directly, and get ; then one can use the
approximation that , to get .

Another is to use the fact that , and get that if , then we need , which is
equivalent to . This completes the proof of the theorem.

The main comment here is that the optimum solution figures in the proof even though the algorithm has no
idea about it. The argument also does not say that the algorithm picks one of the optimal sets. It only says that
at every step, the algorithm picks a set that at that point, looks as good as any of the optimal sets.

It's a nice exercise to come up with instances where the optimum solution has no overlap with the chosen sets.

Another remark is that this analysis is tight. There exist instances (easy enough to construct) where the greedy
algorithm is  factor worse than the optimum solution. A highly non-trivial result shown around 20 yrs
ago, is that in fact, no polynomial time algorithm can achieve an approximation ratio better than  (even
say ) unless P=NP (we will discuss what this means towards the end of the course; for now, you may
treat this as something extremely unlikely).
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