Advanced Algorithms

Lecture 10: MST (contd.), local search

Announcements

- HW 2 due tomorrow!
- HW 1 grading, comments (Vivek Gupta)

Greedy algorithms - comments

- Usually "easy" to come up with (we are naturally myopic)
- Usually not optimal - examples, Traveling salesman, set cover, ...
- (Due to this..) analysis is usually tricky

Example 2: spanning trees

Problem: let $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ be a (simple, undirected) graph with edge weights $\left\{w_{e}\right\}(>0)$. Pick a subset of the edges, such that (a) all vertices are "connected", (b) total weight of edges is minimized
(Communication backbone in a network)

Greedy strategy

- Goal: need to connect all vertices to one another
- Prim: Start with one vertex, add a new vertex to connected set each time
- Kruskal: Add edges one at time, choose min weight edge that isn't "redundant"

Surprise: both turn out to be optimal!

Prim's algorithm

- start with $\mathrm{S}_{1}=\{u\}$
- for $t=1, \ldots, n-1$:
- add least wt edge out of S_{t}

https://visualgo.net/en/mst

Correctness

- Observation: at each iteration, we have a set of connected vertices $-S_{\mathrm{t}}$
- Will show: There exists a min spanning tree for the full graph that contains all edges chosen so far - structural assumption

Inductive proof: assuming there's an MST for the full graph containing edges added until t, prove that there's an MST for the full graph containing edge added at $(t+1)$

$$
t=n-1
$$

Proof of "opt prefix" property

- e has the least wt of all the edges going out of S_{t}
- know: J an MST that contains
$\left\{e_{1}, e_{2}, e_{3}, e_{4}\right\}$; will show:
J an MST (for full graph) that
contains $\left\{e_{1}, \ldots, e_{4}, e\right\}$
Strategy: Take tree T that contains $\left\{e_{1}, \ldots, e_{4}\right\}$ and "modify" it to include e.

$$
\stackrel{u \rightarrow v_{1} \rightarrow v_{2} \rightarrow \rightarrow v_{\gamma} \rightarrow i}{\leftarrow} \rightarrow \underset{\sim}{j} \rightarrow w_{1} \rightarrow \ldots \rightarrow \omega_{s} \rightarrow v_{n} u \rightarrow v
$$

Proof of "opt prefix" property

edges of T

- By choice, $\quad \cot (e) \leqq \operatorname{\omega t}\left(e^{\prime}\right)$
- Consider $T^{\prime}=T \backslash\left\{e^{\prime}\right\} \cup\{e\}$
- Claim: T^{\prime} is a spanning the (i.e., all vertices in G are still connected)
- To show this, it suffices to prove that T^{\prime} has a path from $i \rightarrow j$. (\& this is clear - from picture).

$$
O(|E|+|v| \log n) \sim O\left(\log n\left(|E|+\left\lvert\, \frac{|v|}{n}\right.\right)\right)
$$ Running time

list.
Store as priority queue
\rightarrow Update: - pick least wot edge out of $S_{t}(u \rightarrow v)$

$$
\text { -add end-pt } v \text { to } S_{t}
$$

$\log n$ update edges going out of S_{t+1}. $O(1)$
\rightarrow Can see: * takes time $=\operatorname{deg}(v) \cdot \log n$.

$$
\begin{aligned}
& \text { H takes time }=\log n \cdot\left(\sum_{v}(\operatorname{deg}(v)+1)\right) \\
& \text { Overall run time }=0 \text { ever }
\end{aligned}
$$

Minimum spanning tree

- Simple algorithms - analysis slightly tricky
- Common inductive approach for greedy algorithms: show that \downarrow there's an optimal solution that agrees with all choices so far
- Can be solved in $\mathrm{O}((\mathrm{m}+\mathrm{n}) \log \mathrm{n})$ time
- Procedure closely related to shortest paths - Dijkstra's algorithm

Local search

Main idea

- Start with any solution, try improving by moving to "nearby" solution
- Stop if no nearby solution is better

Classic example - function opt

Problem: Let $f(x)$ be a function defined on domain D. Find $\operatorname{argmin}_{x} f(x)$

Multi-variate functions

When is it optimal?

- Any local optimum is actually "global" optimum (opt over domain)

Does this property hold for some natural class?

Statement is not generally true.

Minimizing a convex function

$$
f: \mathbb{R}^{n} \rightarrow \mathbb{R}
$$

Convexity: - single-variable $f_{n}: \quad f^{\prime \prime}(x)>0 \quad \forall x \in \operatorname{domain}$

- multi-variate: $\nabla^{2} f_{1 x} \geqslant 0$.(bsd.)

$$
\begin{aligned}
-\forall x, y \\
\text { domain. }
\end{aligned} f\left(\frac{x+y}{2}\right) \leqslant \frac{f(x)+f(y)}{2} .
$$

Well-known: Let f be a convex fin \mathbb{R}^{n}. Then any local opt of f is also a global opt!

$$
f\left(x^{\prime}\right)<f(x)
$$

Gradient descent

(all of modern ML)

- What is a direction in which function value drops?
- General algorithm:

$$
\begin{aligned}
& \text { - start with some } x_{0} \\
& \text { - update } x_{t+1}=x_{t}-\eta \cdot \nabla f\left(x_{t}\right)
\end{aligned}
$$

Matching problem

Problem: suppose we have n children and n gifts. Each child has some "happiness value" $\left(\mathrm{V}_{\mathrm{ij}}\right)$ for each gift. Find an allocation (one gift per child) so that total happiness is maximized.

$V_{i j} \geqslant 0$. (given)

Matching - greedy?

- greedy will not work well.
- Cor actually be arbitrarily bad.

Local search (3)

See if swapping gifts of 2,3 improves solution.

- Candidate local search: for every pair $\{i, j\}$,

See if swapping gifts of children i, j improves total cost.

Local search

Claim: take any solution S in which swaps do not increase value. Then total happiness of $S>=(1 / 2)$ total happiness of OPT solution

2 approximation - proof

Claim: take any solution S in which swaps do not increase value. Then total happiness of $S>=(1 / 2)$ total happiness of OPT solution

