
Advanced Algorithms
Lecture 10: MST (contd.), local search



Announcements

• HW 2 due tomorrow! 

• HW 1 grading, comments  (Vivek Gupta)
-



Greedy algorithms — comments

• Usually “easy” to come up with (we are naturally myopic) 

• Usually not optimal — examples, Traveling salesman, set cover, … 

• (Due to this..) analysis is usually tricky



Example 2:  spanning trees

Problem:  let G = (V, E) be a (simple, undirected) graph with edge 
weights {we} (>0). Pick a subset of the edges, such that (a) all vertices 

are “connected”, (b) total weight of edges is minimized

(Communication backbone in a network)



Greedy strategy

• Goal:  need to connect all vertices to one another 

• Prim:  Start with one vertex, add a new vertex to connected set each 
time 

• Kruskal: Add edges one at time, choose min weight edge that isn’t 
“redundant”

Surprise:  both turn out to be optimal!



Prim’s algorithm
https://visualgo.net/en/mst

• start with S1 = {u} 

• for t = 1, … , n-1: 

• add least wt edge out of St
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Correctness
• Observation:  at each iteration, we have a set of connected 

vertices — St 

• Will show:  There exists a min spanning tree for the full graph that 
contains all edges chosen so far  — structural assumption

Inductive proof:  assuming there’s an MST for the full graph 
containing edges added until t, prove that there’s an MST for the full 

graph containing edge added at t+1
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Proof of “opt prefix” property
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Proof of “opt prefix” property
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Running timeSt
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Minimum spanning tree

• Simple algorithms — analysis slightly tricky 

• Common inductive approach for greedy algorithms:  show that  
 
there’s an optimal solution that agrees with all choices so far 

• Can be solved in O((m + n) log n) time 

• Procedure closely related to shortest paths — Dijkstra’s algorithm
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Local search



Main idea

• Start with any solution, try improving by moving to “nearby” 
solution 

• Stop if no nearby solution is better



Classic example — function opt

Problem:  Let f(x) be a function defined on domain D. Find argminx f(x)
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Multi-variate functions
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When is it optimal?

• Any local optimum is actually “global” optimum (opt over domain) 

• Does this property hold for some natural class?f
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Minimizing a convex function
(over all of Rn)
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Well -know Let f be a convex from
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Gradient descent
(all of modern ML)

• What is a direction in which function value drops? 

• General algorithm: --start with some Xo

- update ¥ ,
= ¥ - y
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Matching problem
Problem:  suppose we have n children and n gifts. Each child has some 
“happiness value” (Vij) for each gift. Find an allocation (one gift per child) 

so that total happiness is maximized.
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Matching — greedy?
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- greedy
will not work well .

- can actually be arbitrarily bad .



Local search ( ? )
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Local search
Claim:  take any solution S in which swaps do not increase value. Then 

total happiness of S >= (1/2) total happiness of OPT solution



2 approximation — proof
Claim:  take any solution S in which swaps do not increase value. Then 

total happiness of S >= (1/2) total happiness of OPT solution


