
Advanced Algorithms
Lecture 10: MST (contd.), local search

Announcements

• HW 2 due tomorrow!

• HW 1 grading, comments (Vivek Gupta)
-

Greedy algorithms — comments

• Usually “easy” to come up with (we are naturally myopic)

• Usually not optimal — examples, Traveling salesman, set cover, …

• (Due to this..) analysis is usually tricky

Example 2: spanning trees

Problem: let G = (V, E) be a (simple, undirected) graph with edge
weights {we} (>0). Pick a subset of the edges, such that (a) all vertices

are “connected”, (b) total weight of edges is minimized

(Communication backbone in a network)

Greedy strategy

• Goal: need to connect all vertices to one another

• Prim: Start with one vertex, add a new vertex to connected set each
time

• Kruskal: Add edges one at time, choose min weight edge that isn’t
“redundant”

Surprise: both turn out to be optimal!

Prim’s algorithm
https://visualgo.net/en/mst

• start with S1 = {u}

• for t = 1, … , n-1:

• add least wt edge out of St

¥

-

Correctness
• Observation: at each iteration, we have a set of connected

vertices — St

• Will show: There exists a min spanning tree for the full graph that
contains all edges chosen so far — structural assumption

Inductive proof: assuming there’s an MST for the full graph
containing edges added until t, prove that there’s an MST for the full

graph containing edge added at t+1

=
-

no

ten - I
.

Proof of “opt prefix” property

::÷÷÷÷÷÷{ ee ,
ez , ez , en } ; willshow :

Ianmstforfull graph) that

contains { e
, ,

.
.

, eu ,
e } .

Stray : Take - tree T that contains f e
, ,

.
.

, en } and

"

modify
"

it to include e- .

Proof of “opt prefix” property
u → v

,
-7 vz → .

→ i → j → w
,

→
. . .

→ us →

Y ,

u → v

- -

Bt " T

b.
i

÷ - "
'

m
.

one 's # is .

.

.

-
- E. or-

Consider T
'

= T I { e
' } u { e } .

- Claim: t
' is a spanning

tree (i. e.

,

all vertices in G are still connected) .

- To show this
,

it suffices to prove
that T

'

has a

path from i → j . (& this is clear - from picture) .

-

Running timeSt
OHHHH) c- Oflogn (let thug))

r

- Need to maintain Sf & edges going out of St -

÷
list ' store as priority quite

÷÷÷÷÷÷÷÷÷÷:::
→ Can see : * takes time = degl #. log n .

-

Overall runtime = login . (

Eldest
) t

D)

Minimum spanning tree

• Simple algorithms — analysis slightly tricky

• Common inductive approach for greedy algorithms: show that  
 
there’s an optimal solution that agrees with all choices so far

• Can be solved in O((m + n) log n) time

• Procedure closely related to shortest paths — Dijkstra’s algorithm

-

t

- I
.

Local search

Main idea

• Start with any solution, try improving by moving to “nearby”
solution

• Stop if no nearby solution is better

Classic example — function opt

Problem: Let f(x) be a function defined on domain D. Find argminx f(x)

¥1 '

a

Multi-variate functions
f- I X , ,

Xz , Xs ,
. -

.

, Xd)
Grid search

;#¥s

④ '

!
I,

f- il Rd - HR
.

When is it optimal?

• Any local optimum is actually “global” optimum (opt over domain)

• Does this property hold for some natural class?f
⇐ -

✓

Statement is not generally
true -

Minimizing a convex function
(over all of Rn)

=

=

' f : IR
"

→ 1Pa .

Conmty
.

:
- single - variable fn : f

"

(a) so the domain

-

multi -
variate :

It fin 70 . (psd .) .

-V-x.cz?mffxtI)zfGi-ff# .

ain .

f

f- (tx + f - fly) ⇐ t . ft) to - t) fly)

=forauyo←

Well -know Let f be a convex from

IR
"

.

Then any
local opt off is also

a global opt !

,

Suppose fly) a flx)

it
e

se °.

Y
(local - opt) (global opt)

ffx 'll flx)

Gradient descent
(all of modern ML)

• What is a direction in which function value drops?

• General algorithm: --start with some Xo

- update ¥ ,
= ¥ - y

. Ff ' txt) .

Matching problem
Problem: suppose we have n children and n gifts. Each child has some
“happiness value” (Vij) for each gift. Find an allocation (one gift per child)

so that total happiness is maximized.

|
O 0203

V. zt Vz ,

-1%2

X
O O O

I 2 3

Vij 30 . (given) .

C , Ca Ci Cn

O O O O O -
- O

O

⑥
O

8 , gz
-gjIn

Matching — greedy?
I 2 3 4 I 2

o ⑥
O O

O O

I

1*10000I .

- greedy
will not work well .

- can actually be arbitrarily bad .

Local search (?)

I
,

see if swapping gifts of 2,3

improves
solution .

- Candia roh : for every fair { is j) ,

See if swapping gifts of children i
, j improves

total cost
.

Local search
Claim: take any solution S in which swaps do not increase value. Then

total happiness of S >= (1/2) total happiness of OPT solution

2 approximation — proof
Claim: take any solution S in which swaps do not increase value. Then

total happiness of S >= (1/2) total happiness of OPT solution

