
Lecture 5: Linear time selection, summary of divide-and-
conquer

 

Divide and conquer: high level bits  

The last few lectures have been on the divide-and-conquer paradigm for algorithm design. The main idea is to
divide a problem instance into smaller instances (often by simply partitioning the input), solving the smaller
instances recursively, then "stitching together" the solutions to find a solution to the full instance.

Analyzing divide and conquer algorithms. Typically, we analyze the running time via an inductive analysis
-- if  is the running time of the algorithm on an instance , the run time is the time of the "divide" step,
plus the time taken to solve the subproblems ( , where  are the sub-problems), plus
the time for the "conquer" or combination step. If the instances are parametrized by their size, then this sort of
an analysis results in a "recurrence relation", i.e., the running time on an instance of size  (denoted  for
simplicity) can be expressed as some function of .

Proofs of correctness are also typically done via an inductive argument.

As I emphasized, there's no silver bullet for solving recurrences. There are many techniques, we saw a few of
them in action.

Previous lectures  

We have seen a couple of examples in the past two lectures. The first was one on Merge Sort, and the second
was Integer Multiplication.

In Merge Sort, we used the idea that two sorted arrays of size  can be merged in  time to conclude that
the running time satisfies . We saw using a couple of different methods that this can be
"solved" to .

In integer multiplication, we saw that the naïve divide and conquer algorithm results in a running time that
satisfies . Unfortunately this only gives  (which is the same as the
"elementary school algorithm"). We then observed that by an algebraic manipulation, we can only perform
three recursive calls, thus resulting in . This results in a much nicer running time of 

.

Indeed, this rough idea can be pursued further (divide into more pieces, combine more cleverly), and this
results in a running time of  for any constant . For more details, look up Toom's algorithm (also
see HW1 from 2018). The reason this algorithm isn't too well-known is because it is superseded by one that's
based on the Fast Fourier Transform (see the book chapter linked on the homepage for details).



The selection problem  

We will see one final example of divide and conquer. Consider the following problem:

Problem. suppose we are given an unsorted array  with  elements (all distinct), and a parameter . The
goal is to find the th smallest element of .

The naïve solution to this problem is to sort the array first and then read off the th smallest element. This takes
time . (It is also known ---as we might see later in the course--- that sorting cannot be done faster
than , thus this approach hits a roadblock.)

Can we avoid sorting? Rather surprisingly, the answer turns out to be yes. The algorithm we describe was
proposed by Blum, Floyd, Pratt, Rivest and Tarjan in 1973, and is popularly known as the "median of medians"
algorithm.

Before getting there, here's the rough intuition for why divide and conquer can be helpful for this problem.

Approximate median. A number  is said to be an approximate median for the array  if  is the th
smallest element in the array, for some .

I.e., an approximate median is an element of the array that's "roughly in the middle" in sorted order.

Key idea. Suppose we have a procedure that can take an array and return an approximate median in time 
. Then, we claim that selection can be done in  time.

Proof. Let ApproxMedian(A) be the procedure as above. Now, consider the following algorithm:

Let us start with proving the correctness, i.e., that the procedure correctly outputs the th smallest element.
This is clear if the size of the array is  (to be very precise, we need to have , otherwise we need to output
an error; for now, let us ignore this technicality). The observation is that no matter how we choose  (whether
an approximate median or not), computing the arrays  and  as described and making the appropriate
recursive calls produces the right answer, assuming the recursive calls produce the right answer. Since we
assumed that as the inductive hypothesis, the proof of correctness follows. (Convince yourself via examples in
case you don't see this!)

Next, let us consider the running time. Since  is an approximate median, we must have  as
well as . This means that irrespective of how  compares with the size of , the recursive
problem is on an array of size at most . This yields a running time of 

We can simplify this via the "plug-n-chug" method, as follows:

procedure Select(A, k):

  if sizeof(A) = 1 return the (only) element

  find x = ApproxMedian(A)

  define arrays B, C to be empty to start with

  for (i = 0, 1, ..., n-1):

    if A[i] <= x, add A[i] to array B, else add it to array C

  if k <= sizeof(B), return Select(B, k), else return Select(C, k - sizeof(B))



.

Setting  such that , i.e., , and using the fact that the infinite geometric series 
 sums to , we have that , which means that , as

desired.

Caveat -- approximate median. The above computation holds assuming that the approximate median can be
computed in  time. We describe two methods now. The first is a randomized procedure -- it finds the
approximate median in  time, "with high probability". The second is a procedure that is not "a priori" ,
but turns out to be so.

Probabilistic algorithm: approximate median in practice. In practice, the simplest procedure is to pick a
small sample of the array (say 11 elements), and pick the sample-median (in this case the 6th smallest
element). Indeed, even if we take a single sample, there is a probability of  that we have an approximate
median. (Do you see why?)

In fact, one can prove that if  elements are sampled at random and the 'th smallest element in the
sample is chosen, the probability that we FAIL to get an approximate median is only . This decays
really quickly with .

Deterministic algorithms. While one may prefer the randomized algorithm in practice, the purist might
insist that there's still a small probability of failure. Is there a good deterministic procedure for the approximate
median?

Blum et al. consider the following "median of medians" procedure:

Suppose we partition the array  into (n/5) sub-arrays of size 5 (i.e., the first five elements, the next five
elements, and so on).
Next, suppose we sort each of the sub-arrays (they are of constant size, so any standard procedure takes
constant time per sub-array).
Let  be the array in which  is the middle (i.e., the third) element of the th
sub-array.
Finally, return the median (i.e., the 'th smallest element of .

Note that for the last step, one actually needs a recursive call to the Select() procedure (albeit with an array of
size ).

The key observation is the following: for any array , the median of the array  produced as above is an
approximate median of $A{]$.

The proof is actually really simple and elegant! In class, we saw a "proof by picture"; let us see here a more
detailed proof. Let  be the median of the array . By definition, there are  elements of  that are .
Now, the elements  are, in fact, the rd smallest elements of some sub-array of . Thus we have that at
least  elements of  are  (three for each  that is ). Likewise, we can argue that there are at
least  elements of  that are . Thus, since , if  is the th smallest element of , then 

. In other words,  is an almost median.



Putting everything together. The main difference between the probabilistic algorithm and the median-of-
medians procedure is that the latter itself used Select() as a sub-routine (with an instance of size ). Thus, if
we plug the latter into the procedure Select() described above, using the fact that the other steps in the
procedure take  time, we end up with a recurrence: .

One can try solving this via plug-n-chug, but it becomes fairly messy fairly quickly. However, it can be solved
relatively easily via guess-n-prove. We can, indeed, prove that , assume it is true for , and
show the bound by a simple induction.
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