
Advanced Algorithms
Lecture 10: MST (contd.), local search

Announcements

• HW 2 due tomorrow!

• HW 1 grading, comments (Vivek Gupta)

Greedy algorithms — comments

• Usually “easy” to come up with (we are naturally myopic)

• Usually not optimal — examples, Traveling salesman, set cover, …

• (Due to this..) analysis is usually tricky

Example 2: spanning trees

Problem: let G = (V, E) be a (simple, undirected) graph with edge
weights {we} (>0). Pick a subset of the edges, such that (a) all vertices

are “connected”, (b) total weight of edges is minimized

(Communication backbone in a network)

Greedy strategy

• Goal: need to connect all vertices to one another

• Prim: Start with one vertex, add a new vertex to connected set each
time

• Kruskal: Add edges one at time, choose min weight edge that isn’t
“redundant”

Surprise: both turn out to be optimal!

Prim’s algorithm
https://visualgo.net/en/mst

• start with S1 = {u}

• for t = 1, … , n-1:

• add least wt edge out of St

Correctness

• Observation: at each iteration, we have a set of connected
vertices — St

• Will show: There exists a min spanning tree for the full graph that
contains all edges chosen so far — structural assumption

Inductive proof: assuming there’s an MST for the full graph
containing edges added until t, prove that there’s an MST for the full

graph containing edge added at t+1

Proof of “opt prefix” property

Proof of “opt prefix” property

Running time

Minimum spanning tree

• Simple algorithms — analysis slightly tricky

• Common inductive approach for greedy algorithms: show that  
 
there’s an optimal solution that agrees with all choices so far

• Can be solved in O((m + n) log n) time

• Procedure closely related to shortest paths — Dijkstra’s algorithm

Local search

Main idea

• Start with any solution, try improving by moving to “nearby”
solution

• Stop if no nearby solution is better

Classic example — function opt

Problem: Let f(x) be a function defined on domain D. Find argminx f(x)

Multi-variate functions

When is it optimal?

• Any local optimum is actually “global” optimum (opt over domain)

• Does this property hold for some natural class?

Minimizing a convex function
(over all of Rn)

Gradient descent
(all of modern ML)

• What is a direction in which function value drops?

• General algorithm:

Matching problem
Problem: suppose we have n children and n gifts. Each child has some
“happiness value” (Vij) for each gift. Find an allocation (one gift per child)

so that total happiness is maximized.

Matching — greedy?

Local search

Local search

Claim: take any solution S in which swaps do not increase value. Then
total happiness of S >= (1/2) total happiness of OPT solution

2 approximation — proof

Claim: take any solution S in which swaps do not increase value. Then
total happiness of S >= (1/2) total happiness of OPT solution

