
Advanced Algorithms
Lecture 9: Greedy algorithms (contd.)

Announcements

• HW 2 is out! Due this Friday — ask on Piazza

• HW 1 grading, comments

-

-

C contact : Vivek) .

Recap: greedy algorithms

• Similar to DP — sequential decision making

• At each step, make the “best choice” based on some value only
involving current state

• Choice made is irrevocable — no back-tracking

• Examples: coin change (min # of coins), scheduling, “set cover”

Comments

• Greedy algorithms usually “easy” to come up with (we are naturally
myopic)

• Usually not optimal — examples, Traveling salesman, set cover, …

• (Due to this..) analysis is usually tricky

Set cover

Problem: suppose we have n people, and m “desired skills”; each
person has a subset of the skills. Pick the smallest number of people

such that every skill is covered

n
M

=

Sequential decision making :

,
V

→
- pick one person

at a

✓

time .

✓

Greedy algorithm

• Maintain list of uncovered skills; call it U (initially [m])

• Iteratively add person with most number of “uncovered” skills,
until all skills are covered

-

Theorem

Theorem. Suppose there is an optimum solution that uses k people.
Then the greedy algorithm does not use more than k log n.

Key idea: many skills are covered at each step!

Con n : Greedy is not always optimal ,
but it is

not
' ' terrible "

.

(off by
a factor

of only Igm)

n .

(assuming there is a

##

"

small
"

solution .

) .

§, arguing
about what

happens in greedy alg

€7 :*:D of

Claim: Fj such that

÷

"

is.mn .n÷ .

j I

3141
Pro off

"

of this used the opt

I
' solution

Completing the proof
Claim

The procedure cannot go
on for

Honore
than

klogm
iterations . at : # of uncovered

skills after titers .

=

Pvoofi Ute ,
E Ut - Yt

for every
t .

= Ut (I - the) .

til

E at . ill - fete .
. .

e- not - I)

what is u
?

.

s
m I I - Html ' ?

log m

- a . ti

went : m (I - I)t a 1
.

(I - th)
"

- te -

if we were to set t= kva
,

then

ma . tf -

-
m

a

if this is Cl
,

need a > log em
.

.

'

.

overall
,

need to set t = k log em
.

Example 2: spanning trees

Problem: let G = (V, E) be a (simple, undirected) graph with edge
weights {we} (>0). Pick a subset of the edges, such that (a) all vertices

are “connected”, (b) total weight of edges is minimized

(Communication backbone in a network)

Note: optimal solution is always a tree

IF
.31

I
picked .

-

✓

Xv
✓

✓ u

✓

tr -
.

I
.

I
.

o ✓

on,
,

.

O
. -

-

oofx
y

° -7
Candidly : - start with edge of

least wt
.

. - keep adding edges until yo
'T 've covered all vertices .

} already

• (while adding
uv

,

ache ok if u

'

unreachable
from v

,

add
only if its

' not) .

Greedy strategy

• Goal: need to connect all vertices to one another

• Greedy 1: Start with one vertex, add a new vertex to connected set
each time

• Greedy 2: Add edges one at time, choose min weight edge that isn’t
“redundant”

Surprise: both turn out to be optimal!

(Prim 's algorithm) .

✓ -

a .

I
✓

- -

(Kruskal 's algorithm) .

Prim’s algorithm

Building connected component one
vertex at a time

Start with S
,

=
. { u }

C any
vertex) .

= { 53 .

Of all edges going out of Se ,
add the one

with the least

weight ,
& increment St ;

(now S2 = { 5
,

3 }
.

[Candidate choices for Sz are { 3,5 ,
63

,
{ 3,5 , 43

,

{ 3,5
,

13 093,5 ,
03) .

④ er¥ :

-

Start with { = { u }
,

for any u EV .

- For
' t

= I
,

. - . ,

n - I :

- consider all edges going
' '

out
"

of St .

- pick the one of the least wt & add to

sanon
. ⇐ ammonites .

N

St
,

= Stuff .

-

increment :

Correctness
• Observation: at each iteration, we have a set of connected

vertices — St

• Candidate claim: Set of edges we added so far is a min spanning
tree of St

we
don't have a

good
" structure

"

for

^ MST if

- Jin::
-

← #

s

- edges chosen so far form oust for

↳µ
{ u

, .ua , us , 43
. /

adding edge uyu , gives
MST for { }

.

Correctness
• Observation: at each iteration, we have a set of connected

vertices — St

• Will show: There exists a min spanning tree for the full graph that
contains all edges chosen so far

It\
we bon

.

I
.

BEN:t -

-
I → no edges →

Impinge
.

Inducting :

let e
, , ez ,

. .

, et ,

be the

TT edges chosen so far ,

& let

et . et be the new edge
added

Proof of “opt prefix” property

Knowing that these is an OPT tree that contains

{ 9 ,
- - -

, et - , }
,

need to prove that

there is an
opt tree that contains

{ e
, ,

.
. -

, et } .

Proof of “opt prefix” property

Running time

