
Advanced Algorithms
Lecture 9: Greedy algorithms (contd.)



Announcements

• HW 2 is out! Due this Friday — ask on Piazza 

• HW 1 grading, comments

-

-

C contact : Vivek ) .



Recap: greedy algorithms

• Similar to DP — sequential decision making 

• At each step, make the “best choice” based on some value only 
involving current state 

• Choice made is irrevocable — no back-tracking 

• Examples:  coin change (min # of coins), scheduling, “set cover”



Comments

• Greedy algorithms usually “easy” to come up with (we are naturally 
myopic) 

• Usually not optimal — examples, Traveling salesman, set cover, … 

• (Due to this..) analysis is usually tricky



Set cover

Problem:  suppose we have n people, and m “desired skills”; each 
person has a subset of the skills. Pick the smallest number of people 

such that every skill is covered
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Greedy algorithm

• Maintain list of uncovered skills; call it U (initially [m]) 

• Iteratively add person with most number of “uncovered” skills, 
until all skills are covered

-



Theorem

Theorem. Suppose there is an optimum solution that uses k people. 
Then the greedy algorithm does not use more than k log n.

Key idea: many skills are covered at each step!
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Completing the proof
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Example 2:  spanning trees

Problem:  let G = (V, E) be a (simple, undirected) graph with edge 
weights {we} (>0). Pick a subset of the edges, such that (a) all vertices 

are “connected”, (b) total weight of edges is minimized

(Communication backbone in a network)

Note:  optimal solution is always a tree
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Greedy strategy

• Goal:  need to connect all vertices to one another 

• Greedy 1:  Start with one vertex, add a new vertex to connected set 
each time 

• Greedy 2: Add edges one at time, choose min weight edge that isn’t 
“redundant”

Surprise:  both turn out to be optimal!
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Prim’s algorithm

Building connected component one 
vertex at a time
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Correctness
• Observation:  at each iteration, we have a set of connected 

vertices — St 

• Candidate claim:  Set of edges we added so far is a min spanning 
tree of St
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Correctness
• Observation:  at each iteration, we have a set of connected 

vertices — St 

• Will show:  There exists a min spanning tree for the full graph that 
contains all edges chosen so far 
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Proof of “opt prefix” property
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Proof of “opt prefix” property



Running time


