Advanced Algorithms

Lecture 9: Greedy algorithms (contd.)

Announcements

- WW 2 is out! Due this Friday - ask on Piazza
- MW 1 grading, comments
(contact: Vivek)

Recap: greedy algorithms

- Similar to DP - sequential decision making
- At each step, make the "best choice" based on some value only involving current state
- Choice made is irrevocable - no back-tracking
- Examples: coin change (min \# of coins), scheduling, "set cover"

Comments

- Greedy algorithms usually "easy" to come up with (we are naturally myopic)
- Usually not optimal - examples, Traveling salesman, set cover, ...
- (Due to this..) analysis is usually tricky

Set cover

Problem: suppose we have n people, and m "desired skills"; each person has a subset of the skills. Pick the smallest number of people such that every skill is covered

Sequential decision making:

- pick one person at a time.

Greedy algorithm

- Maintain list of uncovered skills; call it U (initially [m])
- Iteratively add person with most number of "uncovered" skills, until all skills are covered

Theorem
Conclusion: Greedy is not always optimal, but it is not "terrible". (off by a factor $\left.\begin{array}{c}\text { of only log } m\end{array}\right)$
Theorem. Suppose there is an optimum solution that uses k people. Then the greedy algorithm does not use more than $k \log m$.

Key idea: many skills are covered at each step!

$$
\left(\begin{array}{c}
\text { assuming there is a } \\
\text { "small" solution.) }
\end{array}\right.
$$

$V_{t}:=$ set of skills uncovered after picking 't' sets

$$
u_{t}=\left|V_{t}\right|
$$

Claim. $u_{t+1} \leq u_{t}-\frac{u_{t}}{k}$.
$\{\rightarrow \overrightarrow{\text { hap }}$ arguing about what happens in greedy alg using only the size of opt solution.

$\geqslant \frac{\left|v_{t}\right|}{k}$.

Claim: $\exists j$ such that

$$
\left|S_{j} \cap V_{t}\right| \geqslant \frac{\left|V_{t}\right|}{k}
$$

proof of this used the opt solution

Completing the proof
Claim: The procedure cannot go on for \& more than
$k \log m$ iterations.
Proof:

$$
\begin{aligned}
u_{t+1} & \leqq u_{t}-\frac{u_{t}}{k} \quad \text { for every } t \\
& =u_{t}\left(1-\frac{1}{k}\right) \\
& \leq u_{t-1}\left(1-\frac{1}{k}\right)^{2} \leq \ldots \leq u_{0}\left(1-\frac{1}{k}\right)^{t+1}
\end{aligned}
$$

What is u_{0} ? $=m$

$$
=m \text { } u_{t} \leq m\left(1-\frac{1}{k}\right)^{t} \leadsto<1 ?
$$

want: $\quad m\left(1-\frac{1}{k}\right)^{t}<1$.

$$
\left(1-\frac{1}{k}\right)^{k} \approx \frac{1}{e}
$$

if we were to set $t=k \cdot \alpha$, then

$$
m\left(1-\frac{1}{k}\right)^{t}=m \cdot\left(\frac{1}{e}\right)^{\alpha}
$$

if this is $\langle 1$, need $\alpha\rangle \log _{e} m$.
\therefore overall, need to set $t=k \log _{e} m$.

Example 2: spanning trees

Problem: let $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ be a (simple, undirected) graph with edge weights $\left\{w_{e}\right\}(>0)$. Pick a subset of the edges, such that (a) all vertices are "connected", (b) total weight of edges/is minimized

Jpicked
(Communication backbone in a network)

Note: optimal solution is always a tree

Candidate alg: - start with edge of least wot.
1- keep adding edges, until you've covered all vertices. already
(while adding uv, check if u is a reachable from v, add only if it's not).

Greedy strategy

- Goal: need to connect all vertices to one another
(Prim's algorith)
- Greedy 1: Start with one vertex, add a new vertex to connected set each time

\bullet Greedy 2: Add edges one at time, choose min weight edge that isn't "redundant"
(Kruskal's algorithms)
Surprise: both turn out to be optimal!

Prim's algorithm

Building connected component one vertex at a time

Start with $S_{1}=\{u\} \begin{aligned} & \text { (any vertex) } \\ & =\{5\}\end{aligned}$
Of all edges going out of S_{1}, add the one with the least weight, \forall increment S_{1};

$$
\left(\text { now } S_{2}=\{5,3\}\right.
$$

[Candidate choices for S_{3} are $\{3,5,6\},\{3,5,4\}$,

$$
\{3,5,1\} \notin\{3,5,0\}]
$$

Overall algorithm:

- Start with $S_{1}=\{u\}$, for any $u \in V$.
- For $t=1, \ldots, n-1$:

- consider all edges going "out" of S_{t}.
- pick the one of the least ut \& add to Solution
- increment :set S_{t+1} approp riatily.

$$
S_{t+1}=S_{t} v\{x\}
$$

Correctness we don't have a good "structure" for

- Observation: at each iteration, we have a set of connected vertices $-S_{\mathrm{t}}$
- Candidate claim: Set of edges we added so far is a min spanning tree of S_{t}
adding edge $u_{4} u_{5}$ gives MST for $\left\{u_{1}, u_{2}, u_{3}, u_{4}, u_{5}\right\}$.

Correctness

- Observation: at each iteration, we have a set of connected vertices $-S_{\mathrm{t}}$
- Will show: There exists a min spanning tree for the full graph that contains all edges chosen so far

Base case: $t=1 \rightarrow$ no edges \rightarrow nothing to prove

Inductive step:
S_{t} let $e_{1}, e_{2}, \ldots, e_{t-1}$ be the
e_{t} edges chosen so far, e_{t} be let the new edge added

Proof of "opt prefix" property

Knowing that these is an OPT tree that contains
$\left\{e_{1}, \ldots, e_{t-1}\right\}$, need to prove that there is an OPT tree that contains

$$
\left\{e_{1}, \ldots, e_{t}\right\}
$$

Proof of "opt prefix" property

Running time

