Advanced Algorithms

Lecture 7: Dynamic programming (cont.)

Announcements

- WW 2 is out! Due next Friday - start early!
- Policy about citation
(cite all sources for hints, etc.).

Last lecture: subset sum

Problem: given n non-negative integers $A[0], A[1], \ldots, A[n-1]$ and a "target" S, find if there is a subset of the $A[i]$ that add up to S

- Wrote down recursive algorithm:
- $\mathrm{A}[\mathrm{o}]$ is either included or not - split into two "sub-trees"/subproblems
- Key obs: if S is small, same sub-problem is solved many times
- Store answers, look-up before computing!
rumning time $=n \cdot S$.
(memoization)

Last lecture: shortest path

 (See notes)Problem: given a directed graph $G=(V, E)$, two nodes u, v, and a parameter L, find the shortest path with L "hops" from $u->v$

- Recursive algorithm:

- Any L-hop path == (L-1)-hop to a neighbor of $v+$ one edge
- Key obs: only a small number of distinct sub-problems $\leq n$ ($L+1$)
- Again, look-up before making call, and store answers!
running time: $\overline{(L+1)|E| ; ~ m e m o r y ~}=n(L+1)$

Common features
 e $\frac{\checkmark \times \sqrt{x \times \ldots}}{\text { cessions to be made; "reward" }}$
 Sequence of decisions to be made; "only in γ the end.

- Sequential decision making
- Some resource "depleting" (steps remaining / \#remaining)
- Key: past decisions lead to some "state"; we can then solve subproblem starting at the state (ignoring past)
$\left.\begin{array}{r}\text { not the in some } \\ \text { applications - } \\ \text { MIPs. }\end{array}\right]$

More examples

- Cake-eating
- Traveling salesman problem

Eating schedule

Problem: given k pieces of cake, figure out how to maximize "total satisfaction". Constraints:

$$
\beta=0.8
$$

Day 1 ; $\operatorname{Day} 2 ; D_{a y} 3 ; \ldots$ given k pieces $k-n$,

$$
\begin{array}{cc}
\stackrel{n_{1}}{=} & n_{2} \\
\log \left(1+n_{1}\right) & \beta \log \left(1+n_{2}\right)
\end{array} \beta^{2}\left(\log \left(1+n_{3}\right)\right.
$$

First come up with a recursive alg; remember ansurers.

Common features

- Sequential decision making
- Some resource "depleting" (steps remaining / \#remaining)
- Key: past decisions lead to some "state" (that defines subproblem); we can then solve sub-problem (ignoring past); if \# of sub-problems is small, can "store answers"

Other examples define $f i b(n)$:

- $\operatorname{fib}(\mathrm{n})=\mathrm{fib}(\mathrm{n}-1)+\mathrm{fib}(\mathrm{n}-2)$
return $f_{i} \underline{\underline{b(n-1)}}+\underline{\underline{f_{i b}(n-2)}}$;
- Type-setting text (how does LaTeX split words across lines?) $\Rightarrow 0000000$
- Longest common sub-sequence (genome alignment)

$$
\begin{aligned}
& a_{1} a_{2}\left(a_{3}\right) a_{4}-\cdots a_{m} \\
& b_{1}-\cdots-b_{m}
\end{aligned}
$$

- Control theory, optimization, scheduling, ...
(see course web-page).

Common issues

- Defining the "right" sub-problems
- Memory usage! (usually no "smooth" way to trade-off against accuracy) \longrightarrow subset sum used n.S space.
- Recursion "done right"
- Some problems have strong $2 \ldots$ lower bounds.

Example: traveling salesmen
Naive sown: time $=O(n!)$; Space: n^{2}
Problem: suppose we have n "cities" with $d_{i j}$ being distance between cities i and j. Salesman starts at city 1 (home), needs to travel to each city precisely once and return home. The goal is to minimize the total distance traveled.

$$
\begin{aligned}
& 1,5,4,3,2,1 \\
& 1,2,4,3,5,1
\end{aligned}
$$

$$
\left({ }^{\prime \prime} p_{1}, p_{2}, \ldots, p_{n}\right)
$$

- Naive solution?
L for each permutation \wedge of $n!$ $1, \ldots, n$, Compute the total length to travel in the order given by p.

Candidate 1: Greedy strategy: visit the closest unvisited node.

turns out it can lead to sub-optimal tours.

Q.

$$
l_{2}>l_{1}
$$

Recursive formulation?

Sub-problem in
\qquad
starting at u, visit all the vertices in S precisely once, then go to "1": - minimize total cost
\#. Key idea: Sub-problem must involve the "set of unvisited vertices". \rightarrow S

* must remkenber the "start" $\rightarrow 1$.
where are we at? $\rightarrow u$.
* what is the total cost so far?

$$
T S P-\operatorname{Sub}(u, S)
$$

$\operatorname{TSP}-\operatorname{Sub}(x, S):$
if $S=\phi$, return $\operatorname{dist}(u, 1)$.
for all $v \in S$:
compute val $=\operatorname{dist}(u, v)+$

$$
\text { - look-up- }<T S P-S u b\left(v_{1}^{d} S \overline{S \backslash v\}}\right) \text {. }
$$

return the smallest of the 'val' values.
\# of sub-problems?

Defining sub-problems

- Defined by $(v,|S|$

Initially, $u=1, \quad s=\{2, \ldots, n\}$
\# of candidates for u : precisely n.
\# of candidates for S : |Subsets of $\{2,3, \ldots, n\} \mid$

$$
\begin{aligned}
&=2^{n-1} \\
& \text { \#sub-problems }=n \cdot 2^{n-1} \ll(n-1)!
\end{aligned}
$$

Running time
Total running time $=O\left(n^{2} \cdot 2^{n}\right)$

Correctness

