Advanced Algorithms

Lecture 7: Dynamic programming (cont.)



Announcements

e HW 2 is out! Due next Friday — start early!

e Policy about citation
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L ast lecture: subset sum

e Wrote down recursive algorithm:

e A[0] is either included or not — split into two “sub-trees”/sub-
problems

e Key obs: if S is small, same sub-problem is solved many times

e Store answers, look-up before computing!
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Last lecture: shortest path
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e Recursive algorithm:

e Any L-hop path == (L.-1)-hop to

3 U a neighbor of v + one edge
" ‘ e Key obs: onl}wﬂmbgr_of
) /= 7 disESt sub-problems L o ‘Q/H)
e Again, look-up before making
M . - call, and store answers!
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Common features
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e Sequential decision making

¢ Some resource “depleting” (steps remaining / #remaining)

—

e Key: past decisions lead to some “state”; we can then solve sub-
/ problem starting at the state (ignoring past)
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More examples

e Cake-eating

e Traveling salesman problem



Fating schedule ﬁga

Problem: given k pieces of cake,
figure out how to maximize “total
satisfaction”. Constraints: ....




Common features

e Sequential decision making
e Some resource “depleting” (steps remaining / #remaining)

e Key: past decisions lead to some “state” (that defines sub-
problem); we can then solve sub-problem (ignoring past); if # of
sub-problems is small, can “store answers”



Other examples

fib(n) = fib(n-1) + fib(n-2) vobn BBl ) > bib(v-2),
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Type-setting text (how does LaTeX split words across lines?) S =

Longest commaon sub- se uence (genome alignm ii

@ O@

Control theory, optlrmzatlon scheduling, ...
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Common issues
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e Defining the “right” sub-problems
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e Memory usage! (usually no “smooth” way to trade-off against
accuracy) > tubatk o waid M-S mpace
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e Recursion “done right” Wiao
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Problem: suppose we have n “cities” with d; being distance between
cities/ and j. Salesman starts at city 1 (home), needs to travel to each

city precisely once and return home. The goal is to minimize the total
distance traveled. o
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Recursive formulation?
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Detining sub-problems
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Running time
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Correctness



