
Advanced Algorithms
Lecture 7: Dynamic programming (cont.)

Announcements

• HW 2 is out! Due next Friday — start early!

• Policy about citation

(cite all sources for hints
,

etc .) .

Last lecture: subset sum

• Wrote down recursive algorithm:

• A[0] is either included or not — split into two “sub-trees”/sub-
problems

• Key obs: if S is small, same sub-problem is solved many times

• Store answers, look-up before computing!

Problem: given n non-negative integers A[0], A[1], …, A[n-1] and a
“target” S, find if there is a subset of the A[i] that add up to S

-

running time = n . S
.

(memorization) .

Last lecture: shortest path

Problem: given a directed graph G = (V, E), two nodes u, v, and a
parameter L, find the shortest path with L “hops” from u —> v

• Recursive algorithm:

• Any L-hop path == (L-1)-hop to
a neighbor of v + one edge

• Key obs: only a small number of
distinct sub-problems

• Again, look-up before making
call, and store answers!

(See notes) .

O

yo
.

y -

u - I n - Ceti)

M .
m -

-

-

runningme : C Lti) LEI
; memory

= ml LH)
.

Common features

• Sequential decision making

• Some resource “depleting” (steps remaining / #remaining)

• Key: past decisions lead to some “state”; we can then solve sub-
problem starting at the state (ignoring past)

±
✓ x

rf
- -

Sequence of decisions
to be made ;

' ' reward
"

only in

the
end .

i

#

i
is

for :
.

More examples

• Cake-eating

• Traveling salesman problem

Eating schedule

Problem: given k pieces of cake,
figure out how to maximize “total

satisfaction”. Constraints: ….*
→

¥0.8Day I i Day 2 ; Day 3; -
. .

given
K pieces Is -

n
,

M
,

Mz
. .

=

log (Itn
,) peoglltn ,

) filloglttns) . .
.

I

First come up
with a recursive ales ; remember answers .

Common features

• Sequential decision making

• Some resource “depleting” (steps remaining / #remaining)

• Key: past decisions lead to some “state” (that defines sub-
problem); we can then solve sub-problem (ignoring past); if # of
sub-problems is small, can “store answers”

Other examples

• fib(n) = fib(n-1) + fib(n-2)

• Type-setting text (how does LaTeX split words across lines?)

• Longest common sub-sequence (genome alignment)

• Control theory, optimization, scheduling, …

define fits (n) :

-

return fiB+fib 27 ;

=
- 78:q

④a
. ⑤④-④bi ④① -OO

. - .

bm

(see course web - page) .

Common issues

• Defining the “right” sub-problems

• Memory usage! (usually no “smooth” way to trade-off against
accuracy)

• Recursion “done right”

(
H w 2

,

Hw3 - - .)

-

→ subset sum used n . S space .

no good way
to overcome

this

ns
"

's !ace

in general !

m

't -
Some problems

have strong

I .

.

lower bounds .

Example: traveling salesmen

Problem: suppose we have n “cities” with dij being distance between
cities i and j. Salesman starts at city 1 (home), needs to travel to each
city precisely once and return home. The goal is to minimize the total

distance traveled.

• Naive solution?

n

2

I
Naive sohn : time 0dm!) ; Space : n

'

-
-

-

-

I
,

5
,

4,3 ,
2

,
I

5
I

,
2

, 4
,

3
,

5 , I I

Clink.
- - - ik)

"
" L , for each permutation n of

"
n ! I

, ,

n
,

Compute

"
the total length to travel in

dpp.tdp.gg - - tdfnHeheorder given by f .

Candi : Greedy strategy :

visit the closest unvisited mode .

° I

°
° turns out it can lead to

° sub - optimal
tours .

O

.
l

l z

l
,

> h
,

Recursive formulation?
Suh - problem in * . Kiyidea : sub - problem must

words :

- involve the
"

set of unvisited

starting at u
, vertices

"

.

→ S

visit all the
-

¥P÷
A must remteenber the

"

start
' '

→ I .

Tminiinige
total

A where are we
at ? → u .

* whatnot fr ?

TSP .
Sub (u

,
s)

-

captures

TSP - Sub (u
,

S) :
I return to

if 5=4
,

return distlu ,
e) .

start
.

for all VES :

compute val = dist (u
,

v) t

-

t -

- look . up .

←
TSP - Sub (v

,
Shug) .

return the smallest of the
'

val
'

values .

of sub - problems ?

Defining sub-problems
- Defined by (

§
,

current
↳ unvisited

vertex set .

Initially ,

u
-

- I
,

S = { 2
,

.
. - ,

n }

of candidates for u : precisely n -

of candidates for S : I subsets of { 2,3 ,
. .

.

,
n } I

⇐2n
- I

sub - problems = in . 2
" "

a Ln- y !

Running time

Total running time = O (n

'

.

zn) .

Correctness

