
Advanced Algorithms
Lecture 7: Dynamic programming (cont.)



Announcements

• HW 2 is out! Due next Friday — start early! 

• Policy about citation

( cite all sources for hints
,

etc .) .



Last lecture: subset sum

• Wrote down recursive algorithm: 

• A[0] is either included or not — split into two “sub-trees”/sub-
problems 

• Key obs: if S is small, same sub-problem is solved many times 

• Store answers, look-up before computing!

Problem:  given n non-negative integers A[0], A[1], …, A[n-1] and a 
“target” S, find if there is a subset of the A[i] that add up to S

-

running time = n . S
.

( memorization) .



Last lecture: shortest path

Problem:  given a directed graph G = (V, E), two nodes u, v, and a 
parameter L, find the shortest path with L “hops” from u —> v

• Recursive algorithm: 

• Any L-hop path == (L-1)-hop to 
a neighbor of v + one edge 

• Key obs: only a small number of 
distinct sub-problems 

• Again, look-up before making 
call, and store answers!

( See notes ) .
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Common features

• Sequential decision making 

• Some resource “depleting” (steps remaining / #remaining) 

• Key:  past decisions lead to some “state”; we can then solve sub-
problem starting at the state (ignoring past)
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More examples

• Cake-eating 

• Traveling salesman problem



Eating schedule

Problem:  given k pieces of cake, 
figure out how to maximize “total 

satisfaction”. Constraints: ….*
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Common features

• Sequential decision making 

• Some resource “depleting” (steps remaining / #remaining) 

• Key:  past decisions lead to some “state” (that defines sub-
problem); we can then solve sub-problem (ignoring past); if # of 
sub-problems is small, can “store answers”



Other examples

• fib(n) = fib(n-1) + fib(n-2) 

• Type-setting text (how does LaTeX split words across lines?) 

• Longest common sub-sequence (genome alignment) 

• Control theory, optimization, scheduling, …

define fits ( n ) :

-

return fiB+fib 27 ;
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Common issues

• Defining the “right” sub-problems  

• Memory usage! (usually no “smooth” way to trade-off against 
accuracy) 

• Recursion “done right”
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Example: traveling salesmen

Problem:  suppose we have n “cities” with dij being distance between 
cities i and j.  Salesman starts at city 1 (home), needs to travel to each 
city precisely once and return home. The goal is to minimize the total 

distance traveled.

• Naive solution?
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Candi : Greedy strategy :

visit the closest unvisited mode .
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Recursive formulation?
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captures
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Defining sub-problems
- Defined by (
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Running time

Total running time = O ( n
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Correctness


