Advanced Algorithms

Lecture 6: Dynamic programming

Announcements

- HW 1 due tomorrow
- Video for lecture 3 now up!

Last few lectures

- Divide and conquer
- Recurrences
- Many problems - merge-sort, integer/matrix multiplication, "fast selection", ...

Dynamic programming

Toy problem: subset sum

Problem: given n nonnegative integers $A[0], A[1], \ldots, A[n-1]$ and a "target" S, find if there is a subset of the $A[i]$ that add up to S

- Brute force?
- Divide and conquer?
try all possible values for t.

Simple example of "sequential decision making"...

$$
T(n)=2(S+1) T\left(\frac{n}{2}\right)+c \leadsto \operatorname{poly}(n) \cdot(s+1)^{\log n}
$$

Divide and conquer

Gives running time: $\quad(S+1)^{\log n} \cdot p$ ll (n).
[Can be much better than 2^{n}]

Recursive procedure
$A=\{A[0], A[1], \ldots, A[n-1]\} ; \quad \operatorname{target} \underline{S}$.

$$
\{A[1], \ldots, A[n-1]\}, \text { target }=S-A[0]\{A[1], \ldots, A[n-1]\} \text {, target }=S
$$

$$
\left\{A[2], \cdot \& A\left[a^{n-1}\right]\right\}
$$

how long does the procedure take? 2^{n} time \rightarrow exactly the
same as brute-force.

$$
\{A[1], A[3], A[5]\} ?
$$

Recursive procedure

What are sub-problems?
What is running time?

$$
\rightarrow \frac{\left\{A[r], A[r+1]_{1 \ldots,}\right\} ;}{A[n-1]} \text {, target: } S-\ldots,
$$

$$
\downarrow
$$

\rightarrow Some suffix of the original array.
\rightarrow target is some integer between $O \& S$.

Looking closer - example

$$
\begin{aligned}
& 8 \\
& \text { Suppose } A=[1,2,3,5,7,9,10,11] \text { and } S=20 \\
& {[2,3 \ldots], S=19} \\
& {[2,3,5, \ldots], \quad S=20} \\
& {[3,5,7, \ldots], S=17 \quad[3,5,7, \ldots], S=19 \mid[3,5,7, \ldots], S=18 \quad[3,5,7, \ldots] ; S=20} \\
& 5 \\
& 1 \\
& {[5,7, \ldots], S=17 \text {. }}
\end{aligned}
$$

target sum is always an integer between 0...S . \Rightarrow at every level, there are only $(s+1)$ distinct sub-prob lems.

Avoiding duplicate solves

- Can we "store answers"?
- How many sub-problems are there in total?
\downarrow
each sub-problem is of the form $[A[r], \ldots, A[n-1]]$

$$
\text { sub-problem } \equiv\left(r, s^{\prime}\right)_{2}^{1} \quad 0 M \quad \begin{aligned}
& \text { target }=s^{\prime} \\
& \vdots \\
& 0 \leq s^{\prime} \leq S
\end{aligned}
$$

A total of only $n(s+1)$ sub-problems.

Modified procedure
Subset Sum (Start-index", target sum):

- $\underset{\substack{\text { Compute } \\ \text { look-up }}}{\substack{\text { Subsetsum }}}(r+1, S-A[r])$
- Compute subset $\operatorname{Sum}(r+1, S)$
- return YES of either answer was YES else return NO.
Compute / Look-up: chuck of answer exists in the array M, If yes, return $M[r, s)$, else run the recursive-procedure.

Running time
\rightarrow \# of sub-problems in total is $n(s+1)$.
\rightarrow each sub-problem is only being solved once.
all the work is done in the process of solving some sub-problem.

- Overall rus time $=O(n s)$

$$
A[0], \ldots, A[n-1] ; \quad \text { target }=S .
$$

\rightarrow in input size?

$$
\{A[0], \ldots, A[n-1]\}, S
$$

$$
\begin{aligned}
& \log (A[0])+\log (A[1])+\cdots+\log A[n-1]+\log S \\
& \text { runtime }=O\left(\begin{array}{c}
n S) \\
1000
\end{array}\right. \\
& \text { 100-djeit } H \\
& S \times 1000 \\
& \text { input rise: }
\end{aligned}
$$

Example 2: shortest path
n : number of vertices $\uparrow \mathrm{m}: \#$ edges.
Problem: given a directed graph $G=(V, E)$, two nodes u, v, and a parameter L, find the shortest path of length L_{1} from $u->v$
total length.

\rightarrow \# vertices on the path $\left[\begin{array}{l}\text { edge lengths } \\ \text { are } \\ \text { arbitrary. }\end{array}\right]$
Naive sold:
try every
L-hop -path.

Recursive procedure?
Shortest Path $(u, v, L):$ and $v=u$,
base-case: if $L=0$ return 0 .
for each w is.t. (w, v) is an edge:
compute Shortest Path $(\underbrace{u, w, L-1}_{\text {lookup. }}):=x$
let dist $=x+l_{w v}$
pick ω for which "dist" is smallest \& return that value.
Obsns: \rightarrow This procedure is correct, as we "consider" every
\rightarrow This procedure hasestlue α \# paths.

Sub-problems

Every sub-problem looks like $\left(u, v^{\prime}, L^{\prime}\right) \Rightarrow$ parameters v^{\prime} \& L^{\prime} determine what the sub-problem is!
\# swo-problems $\leq ?(L+1) \cdot n)$

Qu: Can we store the answers?

Algorithm, run time
replace "compute" with "compute/look-up".
running time \equiv

Proof of correctness

Common features

- Sequential decision making
- Some resource "depleting" (steps remaining / \#remaining)
- Key: past decisions lead to some "state"; we can then solve subproblem starting at the state (ignoring past)

Examples next class

- Cake-eating problem
- Traveling salesman problem

