
Advanced Algorithms
Lecture 6: Dynamic programming



Announcements

• HW 1 due tomorrow 

• Video for lecture 3 now up!



Last few lectures

• Divide and conquer 

• Recurrences 

• Many problems — merge-sort, integer/matrix multiplication, “fast 
selection”, …



Dynamic programming



Toy problem: subset sum

• Brute force? 

• Divide and conquer?

Problem:  given n non-negative integers A[0], A[1], …, A[n-1] and a 
“target” S, find if there is a subset of the A[i] that add up to S

Simple example of “sequential decision making”…
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Divide and conquer
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Recursive procedure
What are sub-problems? 

What is running time?
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Looking closer — example

Suppose A = [1, 2, 3, 5, 7, 9, 10, 11] and S = 20
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Avoiding duplicate solves

• Can we “store answers”? 

• How many sub-problems are there in total?
t
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Modified procedure
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Running time
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Is this polynomial?

5=315,79-1,074,32

3,4579€

↳ in input size ?

{ Alot
,

. . .

.

Aln -Bf ,?inHg:(
ago ) ) -1 log I AfD ) -1 .

.
.

t log Afn -Btloggs.

runtime = 01ns ) w

i
"

ooo
too . digit #

Sx 1000



Example 2: shortest path

Problem:  given a directed graph G = (V, E), two nodes u, v, and a 
parameter L, find the shortest path of length L from u —> v

⇐ .

. .:O

n :
number of vertices

T
m :# edges

.

mm

yX u

total length - hops
→ # vertices on

the path .

no
.

a- . /
fedgebnglhs

araerwitrary
)

Maimon :

try every
. path .

L - hop



Recursive procedure?
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Sub-problems
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Proof of correctness



Common features

• Sequential decision making 

• Some resource “depleting” (steps remaining / #remaining) 

• Key:  past decisions lead to some “state”; we can then solve sub-
problem starting at the state (ignoring past)



Examples next class

• Cake-eating problem 

• Traveling salesman problem


