
Advanced Algorithms
Lecture 6: Dynamic programming

Announcements

• HW 1 due tomorrow

• Video for lecture 3 now up!

Last few lectures

• Divide and conquer

• Recurrences

• Many problems — merge-sort, integer/matrix multiplication, “fast
selection”, …

Dynamic programming

Toy problem: subset sum

• Brute force?

• Divide and conquer?

Problem: given n non-negative integers A[0], A[1], …, A[n-1] and a
“target” S, find if there is a subset of the A[i] that add up to S

Simple example of “sequential decision making”…

f t t

(try every
subset -7 2

"

. poly In)) .

tense
Ao . -

-

/ An
. ,

7. 7.

. . .

try all possible values for t ?

T (n) =L(Stl) TIZ) t c us poly In) . C

Divide and conquer

Gines running time : (Stl)
"

. poly In) .

[Can be much better than 2
")

Recursive procedure
-

A -

-
{ Alot

,
AfD

,
.

. .

,
Afn - D } ; targets .

E-
I

use →
' t use Afo]

{ All)
, .

. -

,
Afn - Df; target -

.

S . Afo) { AID
,

-
-

.

, Afn - D) , target -

- S

← a
t →

IAH
,

.f . .

Alan . I }
=

how long does the procedure take ?
2

"

time → exactly
the

Some as

brute - force .

Recursive procedure
What are sub-problems?

What is running time?

{ AID ,
AH ,

AID } ?

=
→

O#H,Ak.

,
} ; target :SI .

. . .

Afn - B

I for some r .

→
Some of the original array

.

→ target is some integer between 045 .

Looking closer — example

Suppose A = [1, 2, 3, 5, 7, 9, 10, 11] and S = 20

8

-

← →

[2,3 .
.

.

.

)
,

5=19

'

y
[2

, 3,5 ,
- - I ,

5=20

II.5,7%3,5=17%7
,

. -1,5-19 !(3,5 ,
-7

,
-7%5=18 7¥

. .) ; s -

-
ro

← ⇒,

tf¥H!C5,7,...3.S
target sum is always an integer between o .

. . .

S .

⇒ at every
level

,
there are only (Stl) distinct

sub - problems .

Avoiding duplicate solves

• Can we “store answers”?

• How many sub-problems are there in total?
t

each sub - problem is of the form [Alr]
,

. . . .

,
Afn - it)

target -

- S
'

.

sub - problem = Cr
,

s
') o Mloss 's S .=

A total of only n (Stl) sub - problems .

Modified procedure
r

S

Subset Sum (start - index
"

, target su"m) :

-c:÷subsetsm(rAr
,)

→ w§}¥, .

-

subset Sumba ,
s)

-

return YES if either answer was YES

else return NO .

Compute / Look . up
: check if answer exists in the array

Me

-

If yes ,

return Mfr, s)) ,

else run
the

recursive - procedure
-

Running time

→ # of sub -
. problems in total is n (Sti) .

→ each sub - problem is only being
solved one .

→°F~ the work is done is the process
of solving

-1

Some
sub - problem .

.

Overall run
time = 01ns)

←

Alot
.

.

.

.

,

Afn - I) ; target -

- S
.

-

Is this polynomial?

5=315,79-1,074,32

3,4579€

↳ in input size ?

{ Alot
,

. . .

.

Aln -Bf ,?inHg:(
ago)) -1 log I AfD) -1 .

.
.

t log Afn -Btloggs.

runtime = 01ns) w

i
"

ooo
too . digit #

Sx 1000

Example 2: shortest path

Problem: given a directed graph G = (V, E), two nodes u, v, and a
parameter L, find the shortest path of length L from u —> v

⇐ .

. .:O

n :
number of vertices

T
m :# edges

.

mm

yX u

total length - hops
→ # vertices on

the path .

no
.

a- . /
fedgebnglhs

araerwitrary
)

Maimon :

try every
. path .

L - hop

Recursive procedure?
yo

- °

-

⑥nwShortest Path () : and
v

- -

u
, III }

base - case : if 2=0 AreturnOi

olwi¥¥ps
u

for . (w
,

u) is an edge :

{
compufeooa.fph.ortutpathfq.lt/:=xdeEletdist--xtlwv

pick w for which
"

dist
"

is smallest & return

that value .

O by .

.

→
This procedure

is correct
,

as we
" consider

"

every
path

↳ This procedure
htasawthx.me a # paths .

Sub-problems

Every sub - problem looks like (u
,

v
'

,

L
') ⇒

parameters
v

'

& L
'

determine
what the

sub - problem is

!#sub - problems E ?

LHQI Can we store the answers ?

Algorithm, run time
-

replace
"

compute
"

with
"

compute) look -

up
"

.

running
time =

Proof of correctness

Common features

• Sequential decision making

• Some resource “depleting” (steps remaining / #remaining)

• Key: past decisions lead to some “state”; we can then solve sub-
problem starting at the state (ignoring past)

Examples next class

• Cake-eating problem

• Traveling salesman problem

