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Summary

This paper 1s the text of an invited address before the
annual summer meeting of the American Mathematical Society at
Laramie, Wyoming, September 2, 1954.

The contents are chiefly of an expository nature.
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THE THEORY OF DYNAMIC PROGRAMMING

Richard Bellman

§1. Introduction

Before turning to a discussion of some representative
problems which will permit us to exhibit various mathematical
features of the theory, let us present a brief survey of the
fundamental concepts, hopes, and aspirations of dynamic programming.

To begin with, the theory was created to treat the mathe-—
matical problems arising from the study of various multi—stage
declsion processes, which may roughly be described in the fol-
lowing way: We hsve a physical system whose stzte at zny time ¢t
1s determined by a set of quantities which we call state para—
meters, or state variables. At certain times, which mz2y be pre—
scribed in advance, or which may be determined by the process
itself, we are called upon to make decisions which will affect
the state of the system. These decisions are equivalent to
transformations of the state variables, the cholce of a decision
belng ldentical with the choice of a transformation. The out-—
come of the preceding decisions 1s to be used to guide the choice
of future ones, with the purpose of the whole process that of
maximizing some function of the parameters describing the final
state.

Examples of processes fitting this loose description are
furnished by virtually every phase of modern life, from the plan-—
ning of industrial production lines to the scheduling of patlents

‘at a medical clinic; from the determination of long-term
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investment programs for universities to the determination of a
replacement policy for machinery in factories; from the program—
ming of training policles for skilled and unskilled labor to

the cholce of optimal purchasing and inventory policies for
department stores and military establishments.

It is abundantly c¢lear from the very brief description of
possible appllications that the problems arising from the study
of these processes are problems of the future as well as of the
immediate present.

Turning to a more preclse dlscussion, let us 1introduce a
small amount of terminology. A sequence of declisions will be
called a policy, and a policy which 1s most advantageous accord-
ing to some preassigned criterion will be called an optimal
policy. |

The classical approach to the mathematlicsl problems arising
from the processes described above 1s to conslder the set of all
possible sequences of decisions, which 1s to say, the set of
all feaslble policies, compute the return from each such feasible
policy, and then maximize the return over the set of z3ll feasible
policies.

It 1s evident that stralghtforward and reasonable as such
a procedure 1s, 1t 1s often not practical. For processes involv-—
iIng even a moderate number of stages aqd a moderate range of
cholces at each stage, the dimension of the resultant maximlza-—
tion problem will be uncomfortably high, with continuous processes

requiring maximization over function space.
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If we momentarlly re—examine the situation, not as a

mathematician, but as a "practical man," we see that this price
of excessive dimensionality—a price that occaslonally makes
even a modern computing machine cringe—arises from a demand
for too much information. How much information 1s actually
requlired to carry out a multi—stage decision process?

Do we require a knowledge of the complete sequence of
decisions, those to be performed at the present stage, those at
the next stage, and so on? Not at all! It 1s sufficlent to
furnish a general prescription which determines at any stage the
decision to be made in terms of the current state of the system.
In other words, if at any particular time we know what to do, 1t
1s never necessary to know the decisions required at subsequent
times.

Donning our mathematical cap again, we see that this common-—
sense attltude reduces the dimension of the problém to 1ts proper
level, namely the dimension of the decilsion problem that con—
fronts one at any particular time.

For the case of deterministic processes, which is to say,
those where the 1nitial state and the decision uniquely determire
the outcome, both viewpolnts are possible. For the case of
stochastic processes, where a decislion determines only a distri-

bution of outcome states, the classical enumerative approach is

virtually impossible.
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§£2. The Fundamental Approach

As stated above, the basic idea of the theory of dynamic
programming is that of viewing an optimal policy as one deter-—
mining the decision required at each time in terms of the cur—
rent state of the system. Following this line of thought, the
basic functional equations given below describing the quantita—
tive aspects of the theory are uniformly obtained from the fol-—
lowing intuiltive
Principle of Optimality: An optimal policy has the property that

whatever the initlal state and initial decisions are, the remain—

ing decisions must constitute an optimal policy with regard to

the state resulting from the first decisions.

The functional equations we shall derive are of a difficult
and fascinating type, wholly different from any encountered pre-—
viously in analysis. Nonetheless, as we shall see below, they
may be utilized to provide an entirely new approach to some clas—

sical problems.

£§3. Mathematical Formulation—I: A Discrete Deterministlic Process

To 1llustrate the type of functional equation that arilses
from an application of the princlple of optimality, let us begiln
with the simplest case of a deterministic process where the sys—
tem 1s described at any time by an M—dimensional vector
p = (pl,pz,...,pM), constrainted to lie within some region D.
Let T = {Tkk, where k runs over a set which may be finite, enu-
merable, or continuous, be a set of transformations with the

property that p€D implies that T, (p)eD for all k.
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Let us assume that we are considering an N-stage process
to be carried out to maximize some scalar function, R(p) of the
final state. We shall call this function the N—stage return.

A policy consists of a selection of N transformations,

P — (T1,T2,...,TN), vielding successively the states

Tl (p) ’
Tz(pl):

b1

Pz

Py = Ty(Py_4)
if
If D is a finite region,/each T, (p) 1s continuous in p, and if
R(p) is a continuous function of p for pgD, it is clear that an
optimal policy exlsts. The maximum value of R(pN), determined ty
an optimal policy, will be a function only of the initial vector p

and the number of stages N. Let us then define

]

(2)  fy(p) = Max R(py)

]

the N—stage return obtained using 2n optimal
policy starting from the initial state p.

To derive a functional equation for fN(p), we employ the
principle cited above. Assume that we choose some transformation
Tk as a result of our flrst decision, obtaining thereby a new
state Tk(p). The maximum return from the following (N—1) stages

is, by definition, fN_l(Tk(p)). It follows that k must now be
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chosen so as to maximize this. The result 1s the basic func-—

tional equation
(3) fiy(p) = Max £y, (Tye(p)), N=2,3,... .

It is clear that a knowledge of any particular optimal
policy, not necessarily unique, will yleld fN(p), which 1s
unique. Conversely, given the sequence {}N(pf}, all optimal
pollcies may be determined.

We thus have a duality between the space of functlons and
the space of policies which is of great theoretical and compu-—

tational importance. This point will be discussed again below.

‘54. Mathematical Formulation—II: Discrete Stochastic Case

Let us now consider the case where the transformatlions are
stochastic rather than deterministic. A choilce of a transforma-—
tion Ty now yields a stochastlic vector z as the new s8tate vec—
tor with an assoclated vector distribution function de(p,z)..

It is clear that it is now in general meaningless to speak
of maximizing the return. We must agree to measure the value of
a policy in terms of some average value of the function of the
final state. Let us call this expected value the N-stage return.

We now define fN(p) as before 1n terms of the N-stage return.
If z is the state resulting from any inltial transformation Tk’

the return from the last (N-1) stages will be f ,(z). The
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expected return as a result of the choice of T, 1s

(1) S) £, (2)aG,(p,z2)

z&D

Hence, the functional equation for fN(p) is

(2) fN(p) = Max 25; fN_l(z)dG(p,z), N=2,2,...

Note that the deterministic process may be consldered to be

merely a particular case of a stochastic process.

§5. Mathematical Formulation—III: Infinite Stochastic Process

For mathemstical purposes, it is frequently useful to con-
sider the fictitious infinite process in which there are an
unbounded number of stages. In that case, the sequence fN(p)
is replaced by the single function f(p) = foo(p), and the formal

equivalent of (3.2) 1is

S £(z)aG, (p,z)

(1) f(p) = Max
k ZED

§§6. Mathematical Formulation—IV: Continuous Deterministic
Process

If we consider a continuous process where a declsion must
be made at each polnt of a time interval, we are led to maxi—
mizatlion problems over function spaces. The simplest examples

of these problems are furnished by the calculus of variations.
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As we shall show below, our approach leads to a new.view of
this classical theory.
Defining

(1) f(p;T) = the return obtained over a time interval O,T
using an optimal policy starting from an
initial state p

the analogue of the functional equation of (3.3) is

(2) £(p;S+T) = Max £(Tq(p);T)
D|0,S
where the maximum 1s taken over all allowable decislons made
over the initial interval [0,5].
As soon as we conslder Infinite processes, we are confronted
‘by the difficulty of showing that the maximum is actually attained.
Consequently, in general, we must initially replace (6.2) by

the rigorous equation

(3) £(p;S+T) =DE[ZS)1,1§_1 f(TS(p);T)

and then show, under various assumptions, that the extremum is
attained.

As will be shown below, the limiting form of (6.3) as
S ——> 0 ylelds a partial differential equatilon.

We shall not dlscuss here the corresponding problem for the
case of stochastlc processes since a number of interesting and
difficult conceptual questions arise which have not as yet been

fully resolved.
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§7. Some Examples—I: An Allocation Problem
Before proceeding any further with our general discussion,
let us 1llustrate these ideas by means of a number of examples,
of both stochastic and deterministlic type, whlch are repre—
sentative of the types of problems which fall within the domain
of the general theory.
Problem 1. We are given a quantity x > O that may be divided
into two non-negative parts, y and x-y. From y we obtain a
return of g(y), at the expense of reducing y to ay where
0 < a< 1; from x—y we obtain a return of h(x-y) at the expense
of reducing x—y to b(x—y) where O < b < 1. The process is now
repeated with the new initial quantity ay + b(x-y), and so on
indefinitely. How does one allocate at each stage so as to
maximize the total return obtained over the entire process?
This is a very simple prototype of a large class of impor-—
tant allocation and investment problems which occur in a number
of diverse activitiles.

Let

(1) f(x) = the total return obtained employing an
optimal policy.

Arguing as above, it is readily seen that f(x) satisfies the

functional equation

(2)  £(x) = Sup [g(y) + h(x-y) + f(ay + b(x-y))] , x>0
O<y<x

£f(0) =0
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For a discussion of the varlious ways in which thils equa-—-
tion can arise, and some of the analytic results which can be
obtained, we refer the reader to [4], [6], [11], [12].

Treatment of the closely related optimal Inventory problem

may be found in [2], [29], [15].

£8. Some Examples—II: Stochastic Gold Mining

Let us now éonsider the following example:

Problem 2. We are fortunate enough to possess two gold mines,
Anaconda and Bonanza, and a sensitive gold-mining machine with
the following characteristics: If the machine 1s used in
Anaconda, it will mine, with probabllity p, a fixed fraction r
of the gold there and be undamaged; with probability (1-p) it
will mine nothing and be damaged beyond repair. If the machine
is used in Bonanza, 1t will mlne, with probabllity q, a fixed
fraction s of the gold there and be undamaged; with probability
(1—q) it will mine nothing and be damaged beyond repair.

At each stage, as long as the machine is undamaged, we
have our choice of using the machine in Anaconda or Bonanza.
Glven thé initial amounts, x and y respectively in each mine,
what sequence of cholces maximizes the expected amount mined
before the machine is damaged?

Let

(1) £(x,y) = the expected amount of gold mined before the
machine 1s damaged using an optimal policy,
starting with x 1n Anaconda and y 1n Bonanza.
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It is easily seen that'f(x,y) satisfies the functional
equation
A: plrx + f((l—r)x,y)j]

(2) f(x,y) = Max I;: aBy + £(x,(1-s)y) ]

The solution has the following simple structure:

a. For prx/(1-r) > qsy/(1—s), choose A
(3) b. For prx/(1l-r)

¢. For prx/(1-r)

NV

asy/(1—s), choose B

qsy/(1—=s), choose either

Using this preseription, f(x,y) may be computed recurrently.
The boundary curve between the two decisions regions is the locus
of points where immediate expected gain over immediate expected
loss 1s the same for both choices. Unfortunately, as a counter—
example of Karlin and Shapiro [3§ shows, this simple and intui-
tive rule is not valid generally In more complicated decision
processes.

For a dilscussion of further results and extensions of both

discrete and continuous type, see [3], [9], (11, PB5l, PBE.

j§9' Some Examples—III: A Problem in the Calculus of Variations

A simple example of a continuous decision process 1s fur-—
nished by the following problem in the calculus of variatlons:
T
Problem 3. Maximize J‘ F(x,y)dt over all y where x and y are

o
connected by the relation dx/dt = G(x,y), x(0) = e.
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The classical technique in the calculus of variatlons,
patterned directly after the technique used in maximization
problems in finite—dimensional spaces, consists of considering
the function ylelding an extremum as a point in function space.
This point is now characterized by means of variational prper-
tles, of which the most important is the Euler equatilon.

Thils apprdach corresponds to finding y as a function of t.
Instead, we shall view the problem as a continuous decilsion
process and seek to determine y at any time as a function of the
two state parameters, ¢ and T.

Let us then set

T
(1) f(c,T) = Max f F(x,y)dt
y o
We shall in what follows proceed completely formally, assumilng
the maximum is attained, that all functlons have the requisite
number of continuous derivatives, and so on. Using the principle

of optimality, we see that f(c,T) satisfies the equatlon

Maxs_:l[ jF(x,y)dt + jTF(x,y)dt]

y[0,

Max [j F(x,y)dt + f(c(S),T)]
o

y[0,5]

where c(S) is x at t = S

f(c,S+T)

(2)
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Assuming that y is continuous, we obtain after a simple com—

putation the limiting form of (2) as S —> O

(3) fp = Max [F(e,v) + G(e,v)f, ]

where v = y(0). Proceeding formally, we have for the determina—

tion of the maximum
(4) F, + G f, =0

Eliminating f between (3) and (4) we obtain the first—order

partial differential equation

Fv FGV—GFV FGVfGFV
(5) (=gl v = )y Yo * (),
v v

The characteristies of this equation lead directly to the Euler
equation obtained by the usual variatlional approach:

F
y

FX
G, G

F
(6) g -gjc-(-z%—) -

The same 1s true in the multi-dimenslional problem where x,y
and G(x,y) are vectors and F(x,y) is a scalar function. The
case where the integrand contalns t explicitly can always be
reduced to the above by the Introduction of a new dependent

variable.
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If we add to our original problem a constraint such as
0 £ ¥ £ x, one which occurs frequently in connection with allo-
catlon and investment problems, the functional equation is

replaced by

(7) fp = Max [F(c,v) + G(c,v)fc:l
ogv<e

Various conditions under which this problem has a solution of
particularly simple structure are given in [1ﬂ. We might note
in passing that the difficulty induced by a constraint of the
type above 1s due to the fact that free variation is not per—
mitted whenever y has an extreme value of O or x, and consequently
inequalities replace equalities.

Further discussion of these techniques will be found in [id,

L6l , 07, L9 .

£§10. Some Examples—IV: An Eligenvalue Problem
This functional—equation approach is also applicable to
eigenvalue problems associated with differential equations of

the form

(1) —%‘é—:+ 2b(t)u = 0

u(0} = u(1) = 0©

where we are interested in the values of %2 which yleld nontrivial

solutlons u.
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Under suitable conditions upon ¢(t), this problem is
equivalent to that of determining the successive minima of ‘
é}u*adt subject to the constraints \6¢(t)u2dt =1, u(o) =u(1) = 0.
In order to employ the functional eguation, we imbed the

problem withln the more general problem of determining the suc—

cesslve minima of

a+t

(2) J(u) = \f u'24s

a

subjJect to the constraints

(a) u(a) = u(a+t) = 0,

(3) a+t a+t
(b) ,f $(S)u2ds + k f $(8) (a+t-S)u(s)ds = 1
a

a

Writing M&n J(u) = f(a,k,t), we can derive a partial differ—
ential equation for f, which 1s nonlinear. Using the fact that
$ may be considered constant, and equal to $(a), for small t,

this equatlion may be used to determine the eigenvalues computa—

tionally (see [1d, 14, 1§).

j%ll. Some Examples—V: Games of Survival

As our last example, let us conslider a porticularly interest—
ing example of a multi-stage game, the so—called "game of sur—

vial."
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Let us assume that two piayers; A and B, are playing a
zero—sum game determined by the matrix A = (aij)’ i,3=1,1,...,N,
and that A starts initlally with an amount of money x, and B
starts initlally with y. Both are playing the game with the
purpose of ruining the other. How should both play?

Let us define, for x and y positive.

(1) f(x,y) = the probability that A ruins B, given
that A starts with x, and B with vy,
and both play optimally.

It is clear that A wishes to maximlze this probability and
B wishes to minimize 1t.

For other values of x and y, f(x,y) is defined as follows:

(2) £(x,y)

i
o
™

I

0 y >0
=1, y<0, x>0

-

It is now clear that f(x,y) satisfies the functional

equation

N
(3) £(x,y) = ng Mén [Zﬂ Pyayf(x + a4, y—aiJ):I

= Min Max [ ]
q p

Since the total sum of money in the game remains constant, it
is clear that we can replace f(x,y) by a function of one

variable, x.
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For further developments, we refer the reader to [3],

B, and to a recent paper by Shapley [39.

é§12. Approximatlon in Pollcy Space and Monotone Convergence

The functional equations we have derived above are, in the
main, analytically intransigent. The theoretical and numerlcal
properties of the solutions must then be derlved by use of that
general factotum of analysis, the method of successive approxl-—

mations. If our functlonal equation has the form

(1) f(p) = T(f(p))

as do those above, we choose an Initlal function fo(p), and

obtaln a sequence of functlons by means of the algorithm

(2) fl’l+1(p) = T(fn(p))’ n=0,1,...

The physical background will usually provide precisely the con-
ditions required for geometrlc convergence of thls sequence to
the solution of (1), where the uniqueness will be equally guaran—
teed by the same condltions.  This technique we call approxima—
tion in function space.

Let us recall, however, that in a2 sense the function f(p)
is not of paramount importance. Rather, 1t 1s the optimal poli-
cies which yleld f(p) that are the most important. It follows

that it may be wiser to approximate to optimal policies rather
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than approximate directly to maximum returns.

In many ways this is a simpler and more natural technique,
as well as more practical in applications. The principle theo-—
retical advantage lies in the fact that we now obtaln monotone

convergence.
To 1llustrate this 1n 1ts simplest form, let us consider

the functlonal equation discussed in

(3) f(x) = Max [g(y) + hix-y) + f(ay + b(X—y))]
O<Ly<x

Perhaps the slmplest initlal guess is to assume that y = 0 con—
tinually. This ylelds as our initial approximatioﬁ to the
maximum return the function fo(x) satlsfying the functional

equatlon
(4) fo(x) = h(x) + £_(bx)
It is now clear that the function f;(x) determined by

(5)  falx) = wex [&) + ntxg) + £,(a7 + v(x)) |

is always greater than or equal to fo(x). Hence, inductively,

if

(6)  fpyr () = dox [63) + nxy) + talavso(x3)) |, neo,1,...
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we have

(1) £, (%) 2 £, (x)

and thus monotone convergence, see [3], [8].

A completely analogous technique 1is applicable to con—
tinuous processes, and 1n partlcular the calculus of varlations.
The results are particularly interesting in connection with

eigenvalue problems where we obtain monotone convergence, ﬁ@,

18

5%13. Further Results

We have not the space here to discuss any of a number of
other 1interesting and important problems in dynamic programming.
For those interested in bottleneck problems occurring in
multi-stage production processes, we refer to [7], [14], [27].

Those interested in scheduling problems may consult [22],
231, [=31.

A number of mathematical problems occurring in connection
with the control of engineering economlc systems are dilscussed
in [26], [21].

Finally, we should like to mention a number of papers con—
cerned with the very difficult mathematlical problems occurring

in the general theory of learning processes, [32], [34], [35],
and [24].
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