
Advanced Algorithms
Lecture 3: Divide and Conquer

Announcements
• HW 1 is out!

• Piazza

• Late policy for HWs

• TA office hours

• Attendance in class, videos!

• Midterm exam: Thu, October 3 (in class)

(due next Friday - Sep 6
't)

-

Last week

• Basic example of analysis by induction — bubble sort, binary search

• Data structures — a one-class intro

• “API” — what is being stored? what are the operations? costs?

• Amortized analysis

• Notes on course page — pls read/comment!

-
(total time for N operations is 01N))

Today

Basic paradigm #1: Divide and conquer
-

=

Ill
.

Today’s plan

• Examples — divide and conquer may(not) be easy to “spot”

• How to analyze divide and conquer algorithms

• correctness

• running time/complexity (recurrences)

=
(typically done via induction) .

Example 1: sorting

• Divide and conquer?

Problem: given an array A of size n, place elements in increasing (non-
decreasing) order.

,

A

Conquer step
B : 13478--1 c : h

- →

Running
time

= Oln)

Sorted C
-

Sorted VBmy1¥y ? 1
I Sorted A

t.gr#nzo-minfBld.ckBminfBlo3.clo3

}⇒
If we

have two sorted lists B & C
,

then the

minimum
element of BUC is min { Bfg

,

Cfo] }
.

-

So we delete that min element (from B or C) & recuse .

Merge (B
,

C) : produces a new array
A

.

-

Until B and C are
both empty :

- add min (B fo)
,

Cfo)) to A & remove it from

Corr . array
.

- if either B is empty or C is empty ,

treat

BIT) or Cfo) as
a .

Overall procedure

sort (array Alo , . . . ,
n - I) :

,
Oli)

if n -

- I
,

return the array ! I

create

subB=
Alo ,

.
.

.

, II

andy,
any

C-= Afnztl ,
.

. . ,

n - I)
(recursively)

i

Run
"

merge
"

procedure on
sorted B

,
C. → Oln)

Proof by induction : - sort (A) gives right answer
when n 't

IIFA) returns right answerfor all irises s n
,

Then sort I At u
" for n .

Correctness
• Template for recursive algorithms:

• show base cases are correct

• assume recursive steps give right answer

• show that “combination” is correct

.
-

. I
out:m÷÷

resulting array
is the

→

sorted version of A
.

✓
-

Len¥a
: all the elements of Buc appear

in A
.

Lemma 2 :
Elements in A will be in increasing order .

#-

. 1)

Proof is easy
because in each step ,

we pick
the

smallest at . of the
" current

" BUC .

Proof of lemma I :

-

- once an element of B or C is written to A
,

it gets deleted (so it never shows up again) .

-

The procedure
runs

until B & C become

empty ⇒ all elements in BVC show

up
at least once .

Running time
time (A) . = I t n t time (B) t time C c) + n

t
\ I

array of size n arrays of size I .

Tfn) : time taken for sort I) on
an array of lengthen

T (n) = 2n -11 t 2 TIE)
-

T In) =
2T I I) t Oln) .

-

↳ recurrence
relations .

Recurrences

• General form: f(n) = function (n, f(1), …, f(n-1))

• Finding a “closed form” can be challenging

• no silver bullet

• many “techniques” — recursion tree, plug-and-chug, guess-and-
prove, master theorem, Akra-Bazzi theorem, …

• personal favorites…

Tl n I -

- T I n - I) t T I I) t I

¥n1=2tlZ)-T
=

-

-

=

Tree: T(n) = 2T(n/2) + cn
T (1) =L .

-

TINTar
-

→
theft?th¥→

④I \ r \ ✓
Items CIt¥TEIITc → ttae.cn

-

g.

terf
11 IN Ill . .

.

atoms ¥
→ total -

-
en

TCF)
.

-

.

I term
'

expand tree until 7=1 ,

or r -

. loyn .

TEE) TH -
-

.

.

T (n) =

Sum of all Th) terms
1-

the
"

c. n

' '

- type
in the

terms in all the levels
last level

I

1 I . Th)

Cn . log n
Ill

n .
I

Tfn) = on log n t n
.

= Olnlogn) .

Tree: T(n) = 2T(n/2) + cn

Plug-n-chug: T(n) = 2T(n/2) + cn

Guess-n-prove: T(n) = 2T(n/2) + cn

Example: integer multiplication

Problem: given two n-digit numbers a = a1a2…an, and b=b1b2…bn, find
the product a * b.

Elementary school algorithm

Divide and conquer?

Running time

Running time

Better algorithm?

Next class

• Complete multiplication example

• Linear time median

• Bring recurrence of choice — we’ll try!

