
Lecture 2: Data structures: A short background  

Storing data  

It turns out that depending on what we wish to do with data, the way we store it can have a significant impact
on the running time. So in particular, storing data in certain "structured" way can allow for fast
implementation. This is the motivation behind the field of data structures, which is an extensive area of study.

In this lecture, we will give a very short introduction, by illustrating a few common data structures, with some
motivating problems.

In the last lecture, we mentioned that there are two ways of representing graphs (adjacency list and adjacency
matrix), each of which has its own advantages and disadvantages. The former is compact (size is proportional
to the number of edges + number of vertices), and is faster for enumerating the neighbors of a vertex (which is
what one needs for procedures like Breadth-First-Search). The adjacency matrix is great if one wishes to quickly
tell if two vertices  and  have an edge between them.

Let us now consider a different problem.

Example 1: Scrabble problem  

Suppose we have a "dictionary" of strings  whose average length is , and suppose we have
a query string . How can we quickly tell if ?

Brute force. Note that the naive solution is to iterate over the strings and check if  for some . This takes
time .

If we only care about answering the query for one , this is not bad, as  is the amount of time needed to
"read the input". But of course, if we have a fixed dictionary and if we wish to check if  for multiple ,
then this is extremely inefficient.

Second idea. Note that for integers, this "membership" problem can be solved easily by first sorting the strings
and at query time, performing a binary search. Since one can do the same for strings (using the natural
lexicographic ordering), we get a procedure that has pre-processing time , and a query time 

. (The mild simplifying assumption we made here is that all the strings are of length roughly  --
i.e., lengths are not too uneven.)

The question now is: can we get rid of the dependence on  altogether? I.e., is there a way to store a set of strings 
, so that finding out if  can be done in time independent of ?



We introduce a data structure known as a prefix tree (also called a trie) that achieves this. The key idea is to
represent a set of strings in a tree. Let us assume that the strings all have characters {a, b, ..., z}. Now, consider a
tree in which (a) the root node corresponds to the empty string "", and (b) for every node, we have 26
descendants, one for each character a-z.

As described, this is an infinite tree. Now corresponding to every node in the tree, we can associate a string,
which consists of the letters used in the path from the root to that node. Likewise, given any string "
", we can find a node that corresponds to it by traversing down the tree, starting with the root, going down to
the descendant corresponding to , then down to the one for , and so on.

Now, how do we keep track of a set of strings using this tree? We can imagine that at every node, we have a
boolean variable that indicates if the string corresponding to the node is present in the set . For instance, in
the figure above, the nodes with the check-mark correspond to the set  indicated.

Avoiding infinities. As defined, the prefix tree is an infinite sized object. Of course, to store it in practice, we
need to only create descendants "if necessary". For instance, if the dictionary contains the word "cat" but no
words starting with "catb", then the node corresponding to "cat" does not have a descendant corresponding to
the character 'b'.

Query time. Once we have built the prefix tree, checking if a string  is present in the tree or not
is fairly simple: we simply start at the root, go down , then down , and so on. If we encounter a descendant
that is not present, we return NO. Otherwise, we go all the way to the node corresponding to , and return the
boolean value stored at the node (which would have been YES if  was in the dictionary and NO otherwise).
The running time is .



Adding/deleting from dictionary. The procedure for adding a word  is also similar. We go
down the tree, adding descendants if necessary. Finally, once we reach the node corresponding to , we set the
boolean value at the node to be YES (or 'true'). This takes  time. Deletion is similar (we go down the tree
and set the boolean to NO/'false'). This does not take into account "garbage collection", i.e., removing branches
in which all the words have been deleted, but it turns out that this can be implemented relatively easily.

Building the tree, i.e., pre-processing time. For most data structures, we need to first "create" the data
structure from the "base" representation of the data. In this case, we need to go from the collection of strings we
have to the prefix tree. This time is usually known as the pre-processing time for creating the data structure. In
many contexts, one creates the data structure before-hand, and only performs "queries" or "tweaks" (a few
add/delete operations) as time proceeds.

In the example of prefix trees, building the tree using the add operations takes time  (using our
analysis of the add operation).

Summary: "API" for prefix trees. Note that a prefix tree, as we defined, is a data structure that stores a set of
strings. It uses space  (can be smaller if the strings share prefixes). We also showed that the operations to
add, delete and query a string  can all be performed in time .

Abstracting data structures  

The final summary in our discussion of prefix trees is something that we should keep in mind whenever we
study any data structure. I.e.,

1. what is being stored? (in the prefix tree e.g., this is a set of strings)
2. what operations does the data structure allow? (for prefix trees, add, delete, query)
3. what is the time complexity of each operation?
4. what is the "pre-processing" time, i.e., the time needed to build the data structure?

Given the answers to these questions, we can make use of the data structure without going into the details of
how the operations are implemented.

Let us now give a second example. The goal is not really to introduce a novel data structure, but to give another
example of how one stores the input affects the time for computation.

Exampe 2: Web search  

Suppose we have a corpus of  documents, each of which has roughly  words. Given a set of query words 
, find all the documents that contain all the query words.

Naive solution. The trivial solution is one that goes through the documents keeping track of whether the
query words appear in the current document. This procedure clearly takes  time (there's also a factor
depending on the number of query words).

Once again, if we have the same set of documents and one makes multiple queries (typical in web search
applications), this can be very inefficient. So the question is: given that most words don't appear in most
documents, can we avoid this running time?



Turns out a nice data structure for solving this problem is what is known as the "inverted index". It is similar to
the "Index" that appears at the end of most textbooks. For each word, suppose we store the list of documents
containing that word. Now, given queries , we can look up the lists for each word  (call it 
), and output 

This results in a query time that is proportional to the sum of the sizes of the inverted index (assuming that we
compute the intersection in the naive way; we will see a slightly better way in the HW).

Pre-processing. Note that creating the inverted index takes time roughly  (we simply have to make a
pass over all the documents, adding the document-ID to the list corresponding to each word). In practice, this is
not too much, given that "collecting" the data takes roughly the same amount of time.

Example 3: Dynamic arrays  

The final example is that of dynamic arrays (i.e. arrays whose size changes as the algorithm proceeds). The goal
is to illustrate an interesting aspect of many data structures, concerning point (3) above: what is the time
complexity of each operation? It turns out that in some data structures, operations can be very expensive "in the
worst case", but one can formally prove that they are cheap "on average".

The goal in dynamic arrays (DA) is to store a sequence of elements, and to support the following operations: (a)
add one element to the end of the DA (b) remove an element from the end of the DA (c) return the th element

We wish to have  time for each of the operations. Furthermore, we wish to have (at any point of time), the
total memory footprint of the data structure to be , where  is the number of elements currently in the DA.
(E.g., we do not want a huge array.)

An example of a dynamic array implementation is the vector<> class in C++.

How are dynamic arrays implemented? The idea is to store the DA as a pair , where  is the number
of elements in the DA, and  is a "regular" array (essentially a known block of memory; size  must be ).
This way, returning the th element can be done by simply returning . So we only need to discuss how to
add and remove elements.

At initialization, the DA (assuming it is empty) will be set to , where  is an array of size , for some
fixed constant (for concreteness, assume that ).

Now imagine that elements are added one by one to the end of the DA . The add procedure works as
follows: as long as size , one can simply add the element being added as , and increment . Now, if
we have size , this can no longer be done. In this case, we create a new array  of size , and copy
over all the current elements of  to , along with the new element being added, and set the DA to 
.

Running time of the add procedure. Note that when size , adding one element takes time ,
which is basically the current size of the array. But on the other hand, as we add more and more elements, this
"extreme case" occurs less and less frequently. Let us compute the total time complexity when we add 
elements to the DA one after another.

Adding elements 1 and 2 takes only 1 step (as we assumed ).



Adding element 3 takes  steps (need to allocate a new array of size 4 (1 step -- assuming "malloc" is constant
time), need to copy 2 elements (2 step), need to add final element (1 step)).

Adding element 4 takes only one step.

Adding element 5 takes 1 + 4 + 1 steps (as before).

Adding elements 6, 7, 8 takes 1 step each.

...

In general, adding elements  takes 1 step each. Adding the st element takes 
steps. Thus, the time taken to add elements , for any , is .

Thus the total time, summing this over  is . In short, adding 
elements to the DA takes a total time of  (ignoring lower order additive terms).

Remark. This is a very simple example of the "doubling trick", a very useful tool in algorithm design.

Running time of the remove procedure. Removing an element of the DA  can be as simple as
decrementing  . However, this results in a wastage of space when a lot of elements are added and then
removed. For instance, suppose we started with an empty array, added a million elements and then deleted
them all. Then  will still be of size  one million, even though the DA is empty. One idea is to use a similar
approach as in the add case -- if half the elements of  are empty, i.e., if size , then we create a new
array of half the size and copy the elements across.

This works, modulo a slight technical problem: suppose that right after the size of  was halved, we perform an
add operation. Then we would end up creating a new array and copying elements across. Thus, alternating
delete/add operations like this would result in a situation where each operation takes  time. A simple trick
to avoid this is to move to an array of half the size only if 3/4'th of the elements of  are empty.

Amortized analysis  

The example of a dynamic array showed that sometimes, operations can be expensive (  in that case), but
one can prove (formally) that any sequence of  operations takes only  time in total, for all . In this case,
we say that the operations have an "amortized running time of O(1) per operation".

Amortized analysis is an important paradigm in studying data structures. In many applications, one only cares
about the total running time of an algorithm. Individual steps taking longer does not matter.
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