
Advanced Algorithms
Lecture 2: Data structures



Last class
• Logistics — course canvas page 

• Piazza  

• Late policy for HWs 

• TA office hours 

• Instructor office hours: Tue/Thu 1:30-2:30 (after class) MEB 3470 

• Midterm exam: Thu, October 3 (in class)

Submit HW 0!

( Can submit n 48 hrs date with a

10% penalty
)

-

-



Last class

• Basic example of analysis by induction — bubble sort 

• Binary search  (finding an integer in a sorted array of integers) 

• See notes — three steps (algorithm, correctness, running time)
↳ a
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Today

Data structures — how does “how we store input” matter?

Lasts :

- Adjacency
list / matrix



Example 1: scrabble problem

• Brute force 

• How to optimize the query time?

Problem:  given a dictionary of strings {s1, s2, …, sN} (avg length L), and 
(multiple) “queries” x, find if x is in the dictionary
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How to store sets of strings?

Idea : store strings in a tree
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Idea : Every string corresponds to a node in the tree
.



Prefix trees / “tries”
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How to store a set of strings ?

S -

- { CS
, , Sz ,

.  - .

,
SN }

- For every Si ,
we

"

mark
"

the corresponding

vertex of the true as

"

True !



Query time
Given n

,

how long does it take to check if a e S

Atg : descend the true using
chars of a .

- if we encounter empty thee
,

return NO

- return the boolean corresponding
to
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Add/remove string
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Add/remove string



“API” with run times

• Operations supported 

• Add string  

• Remove string 

• Query string

Poor man’s binary search tree…

•
what is being stored ? Sets of strings .
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If youhad L - bit integers ,
can treat as strings &

use tries .



Example 2: web search

Problem:  given a collection of documents (doc = list of words), find all 
documents that contain a given set of words

• Naive solution 

• What if most words don’t occur in most documents?
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Inverted index

→ For each word
,

store the list of does it is

present in !

→ Given a query
I q , , Ea }

,

take intersection of

Inv Index l q ,
) n Inv Index ( qz ) .



Running time
Pre -pm :
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Example 3: dynamic arrays

• Think C++ “vector” 

• Need to support the operations: add, delete-from-end, clear 

• Operations should take O(1) time
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size , if you
reach limit

,

initializedoe array of double the size , copy
over

.



Amortization
“killing slowly”

Powerful idea in analysis: some operations can take “a lot” of time; 
but average over any N operations takes O(N) time÷total time for

initial size = no

Let us
consider only add operations .
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Adding elements



Removing elements
idea : If half the allocated space

is unoccupied ,

"

deal locate
"

the latter half of array

→! tin
doesn't quite work ( add -

delete - add- - - example)

Slight
modification : If {

,

"

of allocated space
is unoccupied ,

-

de allocate the last Iz of the array .



Abstract view of data structures

What operations should be supported? 

Complexity of each operation 

Size of the data structure

- what is being stored in the data structure ?
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Some fancier data structures

• Priority queues, Fibonacci heaps, Union-find, … 

• Hash tables 

• Locality sensitive hashes (nearest-neighbor search)
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pre - processing
is
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expensive
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