
Advanced Algorithms
Lecture 2: Data structures

Last class
• Logistics — course canvas page

• Piazza

• Late policy for HWs

• TA office hours

• Instructor office hours: Tue/Thu 1:30-2:30 (after class) MEB 3470

• Midterm exam: Thu, October 3 (in class)

Submit HW 0!

(Can submit n 48 hrs date with a

10% penalty
)

-

-

Last class

• Basic example of analysis by induction — bubble sort

• Binary search (finding an integer in a sorted array of integers)

• See notes — three steps (algorithm, correctness, running time)
↳ a

-

ie

Today

Data structures — how does “how we store input” matter?

Lasts :

- Adjacency
list / matrix

Example 1: scrabble problem

• Brute force

• How to optimize the query time?

Problem: given a dictionary of strings {s1, s2, …, sN} (avg length L), and
(multiple) “queries” x, find if x is in the dictionary

:

for i -

- I
. .

. N
,

check if a -

-
Si

OCN . L)

idea: store strings in Alphabetical order
,

OCNL) perform binary search . Ok)
t

Prepuces : Of NFL. loyal) ; query
: Of L . log N)

How to store sets of strings?

Idea : store strings in a tree

cat o empty string
=

IN⑨
b② . . .

- .

Z
.

se =
ats

.

④#7⑤ -
"

cz

"

-

.

X -

o
.vote

Idea : Every string corresponds to a node in the tree
.

Prefix trees / “tries”
- -

How to store a set of strings ?

S -

- { CS
, , Sz ,

. - .

,
SN }

- For every Si ,
we

"

mark
"

the corresponding

vertex of the true as

"

True !

Query time
Given n

,

how long does it take to check if a e S

Atg : descend the true using
chars of a .

- if we encounter empty thee
,

return NO

- return the boolean corresponding
to

4
n

"

.

Run time =
 OIL) .

Add/remove string
-

-

Addie y) :

⇒ go
down the tree following

characters of y

time
. ("

making
"

modes if needed)

-

$ set boolean corr .

to
"

y
' '

to be True .

"t.in
:Rem

Add/remove string

“API” with run times

• Operations supported

• Add string

• Remove string

• Query string

Poor man’s binary search tree…

•
what is being stored ? Sets of strings .

-

t t

} time = on ,

× -

- California

If youhad L - bit integers ,
can treat as strings &

use tries .

Example 2: web search

Problem: given a collection of documents (doc = list of words), find all
documents that contain a given set of words

• Naive solution

• What if most words don’t occur in most documents?

it
documents N -

- to

;mwo¥oo ,

Irs
9

, , z

>
Nm

time
-

sport
alaska .

→

Inverted index

→ For each word
,

store the list of does it is

present in !

→ Given a query
I q , , Ea }

,

take intersection of

Inv Index l q ,
) n Inv Index (qz) .

Running time
Pre -pm :

OCN .

mL
, big but not terrible .

Query
time : I Inverted Index . l g ,

) It I
.

.
. lait

(could be a . N) .

Example 3: dynamic arrays

• Think C++ “vector”

• Need to support the operations: add, delete-from-end, clear

• Operations should take O(1) time

t t

.

return
,

-

itheinen
t

.

current : n
-

→
2h

O 0<207-0 - -
. ,

II : Start with
" reasonable

"

size , if you
reach limit

,

initializedoe array of double the size , copy
over

.

Amortization
“killing slowly”

Powerful idea in analysis: some operations can take “a lot” of time;
but average over any N operations takes O(N) time÷total time for

initial size = no

Let us
consider only add operations .

£ Total time for adding N elements

new size → 2 no
F 2N .

f
-

-

↳ n
° I + 2 t

. . .

t 2
'

= It
'

-
I

= 2 . I

Adding elements

Removing elements
idea : If half the allocated space

is unoccupied ,

"

deal locate
"

the latter half of array

→! tin
doesn't quite work (add -

delete - add- - - example)

Slight
modification : If {

,

"

of allocated space
is unoccupied ,

-

de allocate the last Iz of the array .

Abstract view of data structures

What operations should be supported?

Complexity of each operation

Size of the data structure

- what is being stored in the data structure ?

-

→

-

Some fancier data structures

• Priority queues, Fibonacci heaps, Union-find, …

• Hash tables

• Locality sensitive hashes (nearest-neighbor search)

- -

I

pre - processing
is

"

expensive
"

