CS 6150: HW0 - Introduction and background

Submission date: Saturday, August 24, 2019, 11:00 PM

This assignment has 6 questions, for a total of 50 points. Unless otherwise specified, complete and reasoned arguments will be expected for all answers.

Question	Points	Score
Big oh and running times	10	
Square vs. Multiply	5	
Graph basics	8	
Background: Probability	12	
Tossing coins	7	
Array Sums	8	
Total:	50	

Question 1: Big oh and running times

(a) [4] Write down the following functions in big-oh notation:

1. $f(n)=n^{2}+5 n+20$.
2. $g(n)=\frac{1}{n^{2}}+\frac{2}{n}$.
(b) [6] Consider the following algorithm to compute the GCD of two positive integers a, b. Suppose a, b are numbers that are both at most n. Give a bound on the running time of $\operatorname{GCD}(a, b)$. (You need to give a formal proof for your claim.)
```
Algorithm \(1 \operatorname{GCD}(a, b)\)
    if \((a<b)\) return \(\operatorname{GCD}(b, a)\);
    if \((b=0)\) return \(a\);
    return \(\operatorname{GCD}(b, a \% b)\); (Recall: \(a \% b\) is the remainder when \(a\) is divided by \(b\) )
```

Question 2: Square vs. Multiply
Suppose I tell you that there is an algorithm that can square any n digit number in time $O(n \log n)$, for all $n \geq 1$. Then, prove that there is an algorithm that can find the product of any two n digit numbers in time $O(n \log n)$. [Hint: think of using the squaring algorithm as a subroutine to find the product.]

Question 3: Graph basics
Let G be a simple ${ }^{1}$ undirected graph. Prove that there are at least two vertices that have the same degree.

Question 4: Background: Probability
(a) [3] Suppose we toss a fair coin k times. What is the probability that we see heads precisely once?
(b) [4] Suppose we have k different boxes, and suppose that every box is colored uniformly at random with one of k colors (independently of the other boxes). What is the probability that all the boxes get distinct colors?
(c) [5] Suppose we repeatedly throw a fair die (with 6 faces). What is the expected number of throws needed to see a ' 1 '? How many throws are needed to ensure that a ' 1 ' is seen with probability $>99 / 100$?

Question 5: Tossing coins
Suppose we have two coins, one of which is fair (i.e. prob[heads] $=\operatorname{prob}[t a i l s]=1 / 2$), and another of which is slightly biased. More specifically, the second coin has prob[heads] $=0.51$. Suppose we toss the coins N times, and let H_{1} and H_{2} be the number of heads observed (respectively).
(a) [3] Intuitively, how large must N be, so that we have $H_{2}>H_{1}$ with "reasonable certainty"?
(b) [2] Suppose we pick $N=25$. What is the expected value of $H_{2}-H_{1}$?
(c) [2] Can you use this to conclude that the probability of the event $\left(H_{2}-H_{1} \geq 1\right)$ is small? [It's OK if you cannot answer this part of the problem.]

Question 6: Array Sums
Given an array $A[1 \ldots n]$ of integers, find if there exist indices i, j, k such that $A[i]+A[j]+A[k]=0$. Can you find an algorithm with running time $o\left(n^{3}\right)$? [NOTE: this is the little-oh notation, i.e., the algorithm should run in time $<c n^{3}$, for any constant c, as $n \rightarrow \infty$.] [Hint: aim for an algorithm with running time $\left.O\left(n^{2} \log n\right).\right]$

[^0]
[^0]: ${ }^{1}$ I.e., there are no self loops or multiple edges between any pair of vertices.

