
1

General-purpose Parallel and
Distributed Programming Systems
at Scale

Dr. Tsung-Wei Huang
Department of Electrical and Computer Engineering
University of Utah, Salt Lake City, UT

2

Outline

q My early research at UIUC
q OpenTimer: A VLSI timing analysis tool
q Express parallelism in the right way

q A general-purpose distributed programming system
q DtCraft and its ecosystem
q Machine learning, graph algorithms, chip design
q Cpp-Taskflow: Modern C++ parallel task programming

q Conclusion and future work

3

My Early Research at UIUC

q Static timing analysis (STA)
q Key component in VLSI design
q Verify the circuit timing

q Many challenges
q Incremental timing
q Parallelization, scalability

Path-based timing analysis to
reduce pessimism

Setup/hold timing checks

OpenTimer: An Open-source STA Tool

q TAU14 (1st place), TAU15 (2nd place), TAU16 (1st place)
q Best tool awards (WOSET ICCAD18, LibreCore16)
q Golden timers in VLSI and CAD communities

OpenTimer Infrastructure (pluggable modules)

Builder
(lineage)

Action
(update timing)

Accessor
(inspection)

Incremental
timing

OpenTimer C++ API

OpenTimer Shell CI, Regression,
Testing frameworks

Application-dependent binary
(TAU, ICCAD CAD contests)

Parser-SPEF Parser-Verilog Cpp-Taskflow Prompt …

4
T.-W. Huang et al., “OpenTimer: A High-performance Timing Analysis Tool,” IEEE/ACM ICCAD15

5

OpenTimer Community – Thank You!

Acknowledged by ACM TAU16-19 Contests

Collaboration with VSD (start-up) and Udemy
online education platform

OpenTimer is begin used in many projects

0

500

1000

2015 2016 2017 2018

OpenTimer usage

Downloads # Requests

We are growing! > 500 downloads in 2018

6

Collaboration with IBM

q “We need a new distributed timing analysis method
to deal with the large design complexity,” IBM Timing
Group, Fishkill, NY, 2015
q Existing tools are architecturally limited by one machine
q Can take 800GB RAM and 14 days on a single machine
q Maintaining “bare-metal” machines is not cost-efficient

System size (memory and cores)

Co
st

 p
er

 u
ni

t o
f

co
m

pu
ta

tio
n

$20 / core @ 8 cores, 128GB

Leverage economy of scale by
decreasing the per unit cost of

computation “hill”

Objective: Execute the same # computations,
distributed across an array of less expensive
per unit cost cloud systems

7

Existing Tools in Cloud Computing

q Hadoop
q Distributed MapReduce platform on HDFS

q Zookeeper
q Coordination service for distributed application

q Mesos
q A high-performance cluster manager

q Spark
q A general computing engine for big-data analytics

q …

Are these tools suitable for our application?

8

Big-data Tools is NOT an Easy Fit …

Method Spark 2.0
(RDD + GraphX Pregel)

Java
(SP)

C++
(SP)

Runtime (s) 68.45 9.5 1.50

0

20

40

60

80

C++ Python Java Scala Spark
GraphX

Runtime comparison on arrival time propagation

Runtime (s)
1.5s 9.5s 10.68s

68.45s

7.4s

Industrial circuit graph
(2.5M nodes and 3.5M edges)

(4 cores)(1 core) (1 core) (1 core) (1 core)

MapReduce overhead Language overhead

9

If it is Hard, let me Hard-code it …

q A “specialized” distributed timer
q Low-level Linux sockets and message passing code
q Explicit resource partition and mapping

q Single-server multiple-client model
q Server coordinates with clients to exchange data

TOP level
M1

Hierarchy M2

PI1

PI2

PI3
Hierarchy M1

PO1

M1:PI1

M1:PI2

M1:PO1

M2:PI1

M2:PI2

M2:PO1

M2

I1
G1

H1

Three partitions, top-level, M1, and M2
(given by design teams)

T.-W. Huang, et al, “A Distributed Timing Analysis Framework for Large Designs,” IEEE/ACM DAC16
T.-W. Huang, et al, US Patent US20170242945A1, assignee IBM, 2017
T.-W. Huang, et al, US Patent US9836572B2, assignee IBM, 2017

10

Observations

q Existing big-data tools have large room to improve
q Fast prototype but hard long-term maintenance
q Non-unified tooling environment
q Cumbersome software dependencies
q Cannot afford hard-coded solution all the time
q Difficult low-level concurrency controls
q Hand-written message passing code
q …

11

We want a general-purpose
programming system to streamline
the building of parallel/distributed

systems!

12

DARPA’s Electronic Resurgence Initiative

q $1.5B investment to reduce the design complexity
q People without chip design experience can design chips

Chip layout army Massive cloud computing! No-touch foundry

*DARPA IDEA/POSH Kick-off Meeting, Boston, June, 2018

q A general-purpose silicon compiler (IDEA & POSH)
q fully-automated layout generator, no human in the loop
q Massive software efforts and tool integrations
q Parallel/distributed computing and machine learning*

13

Hidden Technical Debts in ML Systems

q Only a TINY fractions of ML systems is ML code
q Writing ML code is cheap; system maintenance is $$$$$

q ML innovations are moving to “system innovations”
q Spark MLflow, TensorFlow 2.0, PyTorch, MindsDB
q Parallel/distributed computing, transparency, scalability

Google Inc, “Hidden Technical Debt in Machine Learning Systems,” NIPS 2017

14

Keep Programmability in Mind

q In the cloud era …
q Hardware is just a commodity
q Building a cluster is cheap
q Coding takes people and time

2018 Avg Software Engineer salary (NY) > $170K

Programmability can affect
the “performance” and
“productivity” in all aspects
(details, styles, high-level
decisions, etc)!

15

Want a Unified Programming System

Programmability

Transparency Performance

“We want to let users easily express their parallel/distributed computing
workload without taking away the control over system details to achieve
high performance, using our expressive API written in modern C++”

NO redundant and
boilerplate code

NO taking away the control
over system details

NO difficult concurrency
control details

16

Outline

q My early research at UIUC
q OpenTimer: A VLSI timing analysis tool
q Express parallelism in the right way

q A general-purpose distributed programming system
q DtCraft and its ecosystem
q Machine learning, graph algorithms, chip design
q Cpp-Taskflow: Modern C++ parallel task programming

q Conclusion and future work

17

A New Solution: DtCraft

DtCraft C++ Programming Runtime

…

MLCraft
(distributed machine

learning library)

GraphCraft
(distributed graph
processing library)

…
DataCraft

(distributed data
processing server)

Application pipeline (domain-specific applications)

Cpp-Taskflow
(Parallel task programming library)

Cpp-Container
(Docker, RunC, LibContainer, LXC)

DARPA IDEA Grant, NSF Grant, Best Open-source Tool Awards (IEEE
IPDPS, ACM MM, WOSET, CPPConf, ACM DEBS, ACM/IEEE DAC,
IEEE/ACM ICCAD, IEEE TCAD, ACM TAU, US Patents, etc.)

18

DtCraft C++ Programming Runtime

q You describe an application in a stream graph
q “No arm wrestling” with difficult concurrency details

q Everything is by default distributed
q Same program runs on one and many machines

19

A Hello-World Example

q An iterative and incremental flow
q Two vertices + two streams

A B

“hello from A”

“hello from B”

Stop when no
active streams

Step 1: stream graph

Step 2:
string msg;

Step 2:
string msg;

[=] (auto& B, auto& is) {
Extract string from is;
print string;

}

istream B

Step 3: AèB callback

[=] (auto& A, auto& is) {
Extract string from is;
print string

}

istreamA

Step 3: AçB callback

Step 4: A’s resource
1 CPU / 1 GB RAM

Step 4: B’s resource
1 CPU / 1 GB RAM

Step 5: ./submit –master=127.0.0.1 hello-world

DtCraft Code of Hello World

20

Ø Only a couple lines of code
Ø Single sequential program
Ø No explicit data management
Ø Distributed across computers
Ø Easy-to-use interface
Ø Asynchronous by default
Ø Scalable to many threads
Ø Scalable to many machines
Ø In-context resource controls
Ø Transparent concurrency
Ø Automatic Linux container
… and more

21

Without DtCraft …

Branch your code to server and client
for distributed computation!
simple.cpp à server.cpp + client.cpp

server.cpp

client.cpp
A lot of boilerplate code
plus hundred lines of
scripts to enable
distributed flow…

22

DtCraft to Handle Machine Learning

DtCraft C++ Programming Runtime

…

MLCraft
(distributed machine

learning library)

GraphCraft
(distributed graph
processing library)

…
DataCraft

(distributed data
processing server)

Application pipeline (domain-specific applications)

Cpp-Taskflow
(Parallel task programming library)

Cpp-Container
(Docker, RunC, LibContainer, LXC)

DARPA IDEA Grant, NSF Grant, Best Open-source Tool Awards (IEEE
IPDPS, ACM MM, WOSET, CPPConf, ACM DEBS, ACM/IEEE DAC,
IEEE/ACM ICCAD, IEEE TCAD, ACM TAU, US Patents, etc.)

23

MLCraft – Machine Learning at Scale

q ML system development is very complex
q Hard to track experiments
q Hard to reproduce results
q Hard to deploy and maintain

q MLCraft aims to be a unified ML platform
q Automate ML workflows and developments
q Open API and interface to work with existing libraries
q More robust, predictable, easier to maintain

data prep

training

testingdeploy

raw data

24

Only “60-line” code to
automate a distributed
ML workflow!

25

DtCraft to Handle Distributed Timing

DtCraft C++ Programming Runtime

…

MLCraft
(distributed machine

learning library)

GraphCraft
(distributed graph
processing library)

…
DataCraft

(distributed data
processing server)

Application pipeline (Distributed Timing Analysis)

Cpp-Taskflow
(Parallel task programming library)

Cpp-Container
(Docker, RunC, LibContainer, LXC)

DARPA IDEA Grant, NSF Grant, Best Open-source Tool Awards (IEEE
IPDPS, ACM MM, WOSET, CPPConf, ACM DEBS, ACM/IEEE DAC,
IEEE/ACM ICCAD, IEEE TCAD, ACM TAU, US Patents, etc.)

26

Distributed Timing Analysis

q Master coordinator and worker (a timer per partition)

Master

Agent Timer Timer Agent

Agent Timer Timer Agent

Event loop
(asynchronous)

Send/Recv
(non-blocking)

User
Machine
node

Standard API
report_at
report_slew
report_rat
remove_gate
insert_gate
power_gate
insert_net
connect_pin
...

Data service
(meta data)

Optimization
program

Master replica… …

Messaging
(TCP)

Exchange
timing

27

Distributed Timing Performance

q IBM design of 250 partitions
q OpenTimer as the timing analyzer
q On a cluster of 40 Amazon EC2 instances

q Compared with hard-coded solution
q 15x fewer lines of code
q Only 7% performance loss

8.2
13

19

30.1

8.7
14.2

21.7

32

0

10

20

30

40

10 20 30 40

Sp
ee

du
p

Number of machines (4 CPUs / 16GB each)

Runtime scalability (timing analysis)

DtCraft
Ad hoc*

Up to 30× speedup over baseline
15× fewer lines of codes than ad hoc

*: Hard-coded

7 minutes

0

10

20
Development time

DtCraft Hard-codedweek

OT OT

OT User

Boundary timing

…

Stream graph
(250 IBM design partitions)

28

Improving the programmability of a
system is not only making

programming easier and fast, but is
enabling a new innovation to solve

problems more efficiently

29

DtCraft to Handle Low-level Concurrency

DtCraft C++ Programming Runtime

…

MLCraft
(distributed machine

learning library)

GraphCraft
(distributed graph
processing library)

…
DataCraft

(distributed data
processing server)

Application pipeline (domain-specific applications)

Cpp-Taskflow
(Parallel task programming library)

Cpp-Container
(Docker, RunC, LibContainer, LXC)

DARPA IDEA Grant, NSF Grant, Best Open-source Tool Awards (IEEE
IPDPS, ACM MM, WOSET, CPPConf, ACM DEBS, ACM/IEEE DAC,
IEEE/ACM ICCAD, IEEE TCAD, ACM TAU, US Patents, etc.)

30

Cpp-Taskflow’s Project Mantra

q Task-based approach scales best with multicore arch
q We should write tasks instead of threads
q Not trivial due to dependencies (race, lock, bugs, etc)

q We want developers to write parallel code that is:
q Simple, expressive, and transparent

q We don’t want developers to manage:
q Explicit thread management
q Difficult concurrency controls and daunting class objects

A programming library helps developers quickly write
efficient parallel programs on a manycore machine using
task-based approaches in modern C++

31

Hello-World in Cpp-Taskflow

Only 15 lines of code to get a
parallel task execution!

#include <taskflow/taskflow.hpp> // Cpp-Taskflow is header-only
int main(){

tf::Taskflow tf;
auto [A, B, C, D] = tf.emplace(

[] () { std::cout << "TaskA\n"; }
[] () { std::cout << "TaskB\n"; },
[] () { std::cout << "TaskC\n"; },
[] () { std::cout << "TaskD\n"; }

);
A.precede(B); // A runs before B
A.precede(C); // A runs before C
B.precede(D); // B runs before D
C.precede(D); // C runs before D
tf::Executor().run(tf); // create an executor to run the taskflow
return 0;

}

32

Hello-World in OpenMP
#include <omp.h> // OpenMP is a lang ext to describe parallelism in compiler directives
int main(){

#omp parallel num_threads(std::thread::hardware_concurrency())
{

int A_B, A_C, B_D, C_D;
#pragma omp task depend(out: A_B, A_C)
{

s t d : : c o u t << ”TaskA\n” ;
}
#pragma omp task depend(in: A_B; out: B_D)
{

s t d : : c o u t << ” TaskB\n” ;
}
#pragma omp task depend(in: A_C; out: C_D)
{

s t d : : c o u t << ” TaskC\n” ;
}
#pragma omp task depend(in: B_D, C_D)
{

s t d : : c o u t << ”TaskD\n” ;
}

}
return 0;

}

Task dependency clauses

Task dependency clauses

Task dependency clauses

Task dependency clauses

OpenMP task clauses are static and explicit;
Programmers are responsible a proper order of

writing tasks consistent with sequential execution

33

Hello-World in Intel’s TBB Library
#include <tbb.h> // Intel’s TBB is a general-purpose parallel programming library in C++
int main(){

using namespace tbb;
using namespace tbb:flow;
int n = task_scheduler init::default_num_threads () ;
task scheduler_init init(n);
graph g;
continue_node<continue_msg> A(g, [] (const continue msg &) {

s t d : : c o u t << “TaskA” ;
}) ;
continue_node<continue_msg> B(g, [] (const continue msg &) {

s t d : : c o u t << “TaskB” ;
}) ;
continue_node<continue_msg> C(g, [] (const continue msg &) {

s t d : : c o u t << “TaskC” ;
}) ;
continue_node<continue_msg> C(g, [] (const continue msg &) {

s t d : : c o u t << “TaskD” ;
}) ;
make_edge(A, B);
make_edge(A, C);
make_edge(B, D);
make_edge(C, D);
A.try_put(continue_msg());
g.wait_for_all();

}

TBB has excellent performance in generic parallel
computing. Its drawback is mostly in the ease-of-use

standpoint (simplicity, expressivity, and programmability).

Use TBB’s FlowGraph
for task parallelism

Declare a task as a
continue_node

Somehow, this looks more like “hello universe” …

34

A Slightly More Complicated Example
// source dependencies
S.precede(a0); // S runs before a0
S.precede(b0); // S runs before b0
S.precede(a1); // S runs before a1
// a_ -> others
a0.precede(a1); // a0 runs before a1
a0.precede(b2); // a0 runs before b2
a1.precede(a2); // a1 runs before a2
a1.precede(b3); // a1 runs before b3
a2.precede(a3); // a2 runs before a3
// b_ -> others
b0.precede(b1); // b0 runs before b1
b1.precede(b2); // b1 runs before b2
b2.precede(b3); // b2 runs before b3
b2.precede(a3); // b2 runs before a3
// target dependencies
a3.precede(T); // a3 runs before T
b1.precede(T); // b1 runs before T
b3.precede(T); // b3 runs before T

Still s
imple in Cpp-

Taskflow

35

Micro-benchmark Performance

q Measured the “pure” tasking performance
q Wavefront computing (regular compute pattern)
q Graph traversal (irregular compute pattern)
q Compared with OpenMP 4.5 and Intel TBB FlowGraph

• G++ v8 with –fomp –O2 –std=c++17
• Evaluated on a 4-core AMD CPU machine

Cpp-Taskflow scales the best when task counts (problem size) increases, using the
least amount of code

36

Large-Scale VLSI Timing Analysis

q OpenTimer v1: A VLSI Static Timing Analysis Tool
q v1 first released in 2015 (open-source under GPL)
q Loop-based parallelism using OpenMP 4.0

q OpenTimer v2: A New Parallel Incremental Timer
q v2 first released in 2018 (open-source under MIT)
q Task-based parallel decomposition using Cpp-Taskflow

Cost to develop is $275K with OpenMP
vs $130K with Cpp-Taskflow!
(https://dwheeler.com/sloccount/)

Task dependency graph
(timing graph)

v2 (Cpp-Taskflow) is 1.4-2x faster than
v1 (OpenMP)

https://dwheeler.com/sloccount/

37

Deep Learning Model Training

q 3-layer DNN and 5-layer DNN image classifier

Propagation Pipeline

E0_S0 E0_B0 E0_B1

E1_S1 E1_B0 E1_B1

E2_S0 E2_B0 E2_B1

E3_S1 E3_B0 E3_B1

Ei_Sj ith -shuffle task with storage j Ei_Bj jth-batch prop task in epoch i

...

E
0

E
1

E
1

E
2

E
3

time

F G
N

G
N-1

U
N

U
N-1

G
N-2

...

... F Forward prop task

G
i i

th
-layer gradient calc task

U
i

i
th
-layer weight update task

Dev time (hrs): 3 (Cpp-Taskflow) vs 9 (OpenMP)

Cpp-Taskflow is about 10%-17% faster
than OpenMP and Intel TBB in avg,

using the least amount of source code

38

“Modern C++” Enables New Technology

q If you were able to tape out C++ …

q It’s much more than just being modern
q Must “rethink” the way we used to design a program
q Achieve the performance previously not possible

Most programmers stuck
with old-fashioned C++03

I make small systems work I am making really big systemsExperimenting

IEEE Fp32/64, De-facto
standards become no-brainer

move semantics, lambda, threads, templates, new STL

39

Modern programming languages
allow us to achieve the performance

scalability and programming
productivity that were previously out

of reach

40

What Cpp-Taskflow Users Say …

“Cpp-Taskflow is the cleanest Task API I have ever seen,”
Damien Hocking

“Cpp-Taskflow has a very simple and elegant tasking
interface; the performance also scales very well,” Totalgee

“Best poster award for open-source parallel programming
library,” Cpp-Conference (voted by 1000+ developers)

People are using Cpp-Taskflow to speed up TensorFlow’s kernel!

41

Outline

q My early research at UIUC
q OpenTimer: A VLSI timing analysis tool
q Express parallelism in the right way

q A general-purpose distributed programming system
q DtCraft and its ecosystem
q Machine learning, graph algorithms, chip design
q Cpp-Taskflow: Modern C++ parallel task programming

q Conclusion and future work

42

Conclusion

q Parallel task programming systems
q DtCraft: distributed computing
q Cpp-Taskflow: multicore task programming
q Solution at programming level matters a lot

• Performance is top priority but never underestimate productivity

q Three takeaways
q Need high-level abstractions for parallel programming
q Need descent programming productivity
q Need modern software technologies

q CE students have unique strength in SE
q We understand both hardware and software
q We understand both science and engineering

Acknowledgment (Users & Sponsors)

43

44

https://tsung-wei-huang.github.io/

Please contact me if you are interested in doing
research for building software to solve real-world

computer engineering problems

https://tsung-wei-huang.github.io/

